Files
FastDeploy/tests/models/test_animegan.py
chenjian 87bcb5df21 [Model] add style transfer model (#922)
* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-03 10:47:08 +08:00

47 lines
1.8 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_animegan():
model_name = 'animegan_v1_hayao_60'
model_path = fd.download_model(
name=model_name, path='./resources', format='paddle')
test_img = 'https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_testimg.jpg'
label_img = 'https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_result.png'
fd.download(test_img, "./resources")
fd.download(label_img, "./resources")
# use default backend
runtime_option = fd.RuntimeOption()
runtime_option.set_paddle_mkldnn(False)
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
animegan = fd.vision.generation.AnimeGAN(
model_file, params_file, runtime_option=runtime_option)
src_img = cv2.imread("./resources/style_transfer_testimg.jpg")
label_img = cv2.imread("./resources/style_transfer_result.png")
res = animegan.predict(src_img)
diff = np.fabs(res.astype(np.float32) - label_img.astype(np.float32)) / 255
assert diff.max() < 1e-04, "There's diff in prediction."
if __name__ == "__main__":
test_animegan()