mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 12:00:30 +08:00

* add poros to fastdeploy * update readme * update readme & add license for all files * update benchmark * update copyright for some files Co-authored-by: tianjinjin <tianjinjin@baidu.com>
122 lines
4.6 KiB
C++
122 lines
4.6 KiB
C++
// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @file norm_test.cpp
|
|
* @author Lin Xiao Chun (linxiaochun@baidu.com)
|
|
* @date 2022-02-23 20:38:15
|
|
* @brief
|
|
**/
|
|
|
|
#include <gflags/gflags.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "poros/converter/gpu/norm.h"
|
|
#include "poros/util/test_util.h"
|
|
|
|
static void norm_test_helper(const std::string &graph_IR,
|
|
baidu::mirana::poros::IConverter *converter,
|
|
std::vector<int64_t> shape1 = {5}) {
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn(shape1, {at::kCUDA}));
|
|
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter,
|
|
input_data, graph_output, poros_output));
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
|
|
}
|
|
|
|
static std::string gen_norm_tensor_graph(const std::string &p, const std::string &dims, const std::string &keepdim) {
|
|
return R"IR(
|
|
graph(%1 : Tensor):
|
|
%2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]()
|
|
%3 : int = prim::Constant[value=)IR" + p + R"IR(]()
|
|
%4 : int[] = prim::Constant[value=)IR" + dims + R"IR(]()
|
|
%5 : Tensor = aten::norm(%1, %3, %4, %2)
|
|
return (%5)
|
|
)IR";
|
|
}
|
|
|
|
static std::string gen_norm_empty_dims_graph(const std::string &p, const std::string &dims, const std::string &keepdim) {
|
|
return R"IR(
|
|
graph(%1 : Tensor):
|
|
%2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]()
|
|
%3 : int = prim::Constant[value=)IR" + p + R"IR(]()
|
|
%4 : int[] = prim::ListConstruct()
|
|
%5 : Tensor = aten::norm(%1, %3, %4, %2)
|
|
return (%5)
|
|
)IR";
|
|
}
|
|
|
|
|
|
|
|
TEST(Converters, ATenNormConvertsCorrectlyWith) {
|
|
std::vector<std::string> graphIRs;
|
|
graphIRs.push_back(gen_norm_tensor_graph("2", "[0]","0"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("2", "[1]","0"));
|
|
graphIRs.push_back(gen_norm_empty_dims_graph("2", "","0"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("2", "[1,2]","0"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("2", "[-2,2]","0"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("2", "[1,2]","1"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("1.5", "[1,2]","0"));
|
|
graphIRs.push_back(gen_norm_tensor_graph("0.2", "[-1,-2,-3,-4]","1"));
|
|
|
|
baidu::mirana::poros::NormConverter converter;
|
|
|
|
for(auto ir:graphIRs){
|
|
norm_test_helper(ir, &converter, {3,4,5,6,7});
|
|
}
|
|
}
|
|
|
|
static std::string gen_frobenius_norm_tensor_graph(const std::string &dims, const std::string &keepdim) {
|
|
return R"IR(
|
|
graph(%1 : Tensor):
|
|
%2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]()
|
|
%4 : int[] = prim::Constant[value=)IR" + dims + R"IR(]()
|
|
%5 : Tensor = aten::frobenius_norm(%1, %4, %2)
|
|
return (%5)
|
|
)IR";
|
|
}
|
|
|
|
static std::string gen_frobenius_norm_empty_dims_graph(const std::string &dims, const std::string &keepdim) {
|
|
return R"IR(
|
|
graph(%1 : Tensor):
|
|
%2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]()
|
|
%4 : int[] = prim::ListConstruct()
|
|
%5 : Tensor = aten::frobenius_norm(%1, %4, %2)
|
|
return (%5)
|
|
)IR";
|
|
}
|
|
|
|
TEST(Converters, ATenFrobeniusNormConvertsCorrectlyWith) {
|
|
std::vector<std::string> graphIRs;
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph( "[0]","0"));
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph("[1]","0"));
|
|
graphIRs.push_back(gen_frobenius_norm_empty_dims_graph("","0"));
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph("[1,2]","0"));
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph("[-2,2]","0"));
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph("[1,2]","1"));
|
|
graphIRs.push_back(gen_frobenius_norm_tensor_graph( "[1,2]","0"));
|
|
|
|
baidu::mirana::poros::FrobeniusNormConverter converter;
|
|
|
|
for(auto ir:graphIRs){
|
|
norm_test_helper(ir, &converter, {3,4,5,6,7});
|
|
}
|
|
} |