mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-11 19:40:25 +08:00

* add poros to fastdeploy * update readme * update readme & add license for all files * update benchmark * update copyright for some files Co-authored-by: tianjinjin <tianjinjin@baidu.com>
104 lines
4.5 KiB
C++
104 lines
4.5 KiB
C++
// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @file linear_test.cpp
|
|
* @author tianshaoqing@baidu.com
|
|
* @date Wed Sep 27 11:24:21 CST 2021
|
|
* @brief
|
|
**/
|
|
#include <gflags/gflags.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "poros/converter/gpu/linear.h"
|
|
#include "poros/util/test_util.h"
|
|
|
|
static void linear_test_helper(const std::string& graph_IR,
|
|
const std::vector<at::Tensor>& input_data,
|
|
const std::vector<size_t> replace_const_index) {
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &linearconverter,
|
|
input_data, graph_output, poros_output, nullptr, "", replace_const_index));
|
|
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
|
|
}
|
|
|
|
static std::string gen_no_bias_graph() {
|
|
std::string graph = R"IR(
|
|
graph(%0 : Tensor, %1 : Tensor):
|
|
%2 : None = prim::Constant()
|
|
%3 : Tensor = aten::linear(%0, %1, %2)
|
|
return (%3))IR";
|
|
return graph;
|
|
}
|
|
|
|
TEST(Converters, ATenLinearNoBiasConvertsCorrectly) {
|
|
// aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
|
const auto graph_IR = gen_no_bias_graph();
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn({1, 2}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({3, 2}, {at::kCUDA})); // 内部转置
|
|
linear_test_helper(graph_IR, input_data, {});
|
|
}
|
|
|
|
TEST(Converters, ATenLinearNoBiasNeedPaddingConvertsCorrectly) {
|
|
// aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
|
const auto graph_IR = gen_no_bias_graph();
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn({2, 64, 8}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({30, 8}, {at::kCUDA})); // 内部转置
|
|
linear_test_helper(graph_IR, input_data, {});
|
|
}
|
|
|
|
TEST(Converters, ATenLinearNoBiasNeedPaddingConstWeightConvertsCorrectly) {
|
|
// aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
|
const auto graph_IR = gen_no_bias_graph();
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn({2, 64, 8}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({30, 8}, {at::kCUDA})); // 内部转置
|
|
linear_test_helper(graph_IR, input_data, {1}); //把第二个参数转换成常量
|
|
}
|
|
|
|
TEST(Converters, ATenLinearNoBiasNeedPaddingConstWeight2ConvertsCorrectly) {
|
|
// aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
|
const auto graph_IR = gen_no_bias_graph();
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn({2, 64, 64, 8}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({30, 8}, {at::kCUDA})); // 内部转置
|
|
linear_test_helper(graph_IR, input_data, {1}); //把第二个参数转换成常量
|
|
}
|
|
|
|
TEST(Converters, ATenLinearBiasConvertsCorrectly) {
|
|
// aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
|
const auto graph_IR = R"IR(
|
|
graph(%0 : Tensor, %1 : Tensor, %2 : Tensor):
|
|
%3 : Tensor = aten::linear(%0, %1, %2)
|
|
return (%3))IR";
|
|
baidu::mirana::poros::LinearConverter linearconverter;
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::randn({1, 3}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({2, 3}, {at::kCUDA}));
|
|
input_data.push_back(at::randn({2}, {at::kCUDA}));
|
|
linear_test_helper(graph_IR, input_data, {});
|
|
} |