Files
FastDeploy/poros/unittest/converter/interpolate_test.cpp
kiddyjinjin d38aa4560c [Backend]add poros to fastdeploy (#671)
* add poros to fastdeploy

* update readme

* update readme & add license for all files

* update benchmark

* update copyright for some files

Co-authored-by: tianjinjin <tianjinjin@baidu.com>
2022-11-28 14:08:18 +08:00

273 lines
14 KiB
C++

// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file interpolate_test.cpp
* @author tianshaoqing@baidu.com
* @date Wed Sep 27 11:24:21 CST 2021
* @brief
**/
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "poros/converter/gpu/interpolate.h"
#include "poros/util/test_util.h"
static void interpolate_test_helper(const std::string& graph_IR,
baidu::mirana::poros::IConverter* converter,
std::vector<int64_t> shape){
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn(shape, {at::kCUDA}));
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
// 运行原图与engine获取结果
std::vector<at::Tensor> graph_output;
std::vector<at::Tensor> poros_output;
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter,
input_data, graph_output, poros_output));
ASSERT_EQ(1, graph_output.size());
ASSERT_EQ(1, poros_output.size());
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
}
static std::string gen_upsample_nearest_nd_graph(bool vec_scales,
const std::string& op,
const std::string& output_size,
const std::string& scales) {
std::string output_ir("");
std::string scales_ir("");
std::string op_ir("");
if (!vec_scales) {
output_ir = "int[] = prim::Constant[value=[" + output_size + "]]()";
if (scales.empty()) {
scales_ir = "None = prim::Constant()";
} else {
scales_ir = "float = prim::Constant[value=" + scales + "]()";
}
if (op == "upsample_nearest1d") {
op_ir = op + "(%0, %1, %2)";
} else if (op == "upsample_nearest2d") {
op_ir = op + "(%0, %1, %2, %2)";
} else if (op == "upsample_nearest3d") {
op_ir = op + "(%0, %1, %2, %2, %2)";
} else {
return "";
}
} else {
if (output_size.empty()) {
output_ir = "None = prim::Constant()";
} else {
output_ir = "int[] = prim::Constant[value=[" + output_size + "]]()";
}
if (scales.empty()) {
scales_ir = "None = prim::Constant()";
} else {
scales_ir = "float[] = prim::Constant[value=[" + scales + "]]()";
}
op_ir = op + "(%0, %1, %2)";
}
return R"IR(
graph(%0 : Tensor):
%1 : )IR" + output_ir + R"IR(
%2 : )IR" + scales_ir + R"IR(
%3 : Tensor = aten::)IR" + op_ir + R"IR(
return (%3))IR";
}
static std::string gen_upsample_linear_graph(bool vec_scales,
const std::string& op,
const std::string& output_size,
const std::string& align_corners,
const std::string& scales) {
std::string output_ir("");
std::string scales_ir("");
std::string op_ir("");
if (!vec_scales) {
output_ir = "int[] = prim::Constant[value=[" + output_size + "]]()";
if (scales.empty()) {
scales_ir = "None = prim::Constant()";
} else {
scales_ir = "float = prim::Constant[value=" + scales + "]()";
}
if (op == "upsample_linear1d") {
op_ir = op + "(%0, %1, %2, %3)";
} else if (op == "upsample_bilinear2d") {
op_ir = op + "(%0, %1, %2, %3, %3)";
} else if (op == "upsample_trilinear3d") {
op_ir = op + "(%0, %1, %2, %3, %3, %3)";
} else {
return "";
}
} else {
if (output_size.empty()) {
output_ir = "None = prim::Constant()";
} else {
output_ir = "int[] = prim::Constant[value=[" + output_size + "]]()";
}
if (scales.empty()) {
scales_ir = "None = prim::Constant()";
} else {
scales_ir = "float[] = prim::Constant[value=[" + scales + "]]()";
}
op_ir = op + "(%0, %1, %2, %3)";
}
return R"IR(
graph(%0 : Tensor):
%1 : )IR" + output_ir + R"IR(
%2 : bool = prim::Constant[value=)IR" + align_corners + R"IR(]()
%3 : )IR" + scales_ir + R"IR(
%4 : Tensor = aten::)IR" + op_ir + R"IR(
return (%4))IR";
}
TEST(Converters, ATenUpsampleNearest1d) {
// aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest1d", "10", "");
baidu::mirana::poros::UnsampleNearest1DConverter unsamplenearest1dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleNearest1dScalar) {
// aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest1d", "8", "4.0");
baidu::mirana::poros::UnsampleNearest1DConverter unsamplenearest1dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleNearest1dVecScalar) {
// aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(true, "upsample_nearest1d", "", "4.0");
baidu::mirana::poros::UnsampleNearest1DConverter unsamplenearest1dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleNearest2d) {
// aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest2d", "10, 8", "");
baidu::mirana::poros::UnsampleNearest2DConverter unsamplenearest2dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleNearest2dScalar) {
// aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest2d", "8, 8", "4.0");
baidu::mirana::poros::UnsampleNearest2DConverter unsamplenearest2dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleNearest2dVecScalar) {
// aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(true, "upsample_nearest2d", "", "5.0, 4.0");
baidu::mirana::poros::UnsampleNearest2DConverter unsamplenearest2dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleNearest3d) {
// aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest3d", "10, 8, 6", "");
baidu::mirana::poros::UnsampleNearest3DConverter unsamplenearest3dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest3dconverter, {10, 2, 2, 2, 2});
}
TEST(Converters, ATenUpsampleNearest3dScalar) {
// aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(false, "upsample_nearest3d", "8, 8, 8", "4.0");
baidu::mirana::poros::UnsampleNearest3DConverter unsamplenearest3dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest3dconverter, {10, 2, 2, 2, 2});
}
TEST(Converters, ATenUpsampleNearest3dVecScalar) {
// aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_nearest_nd_graph(true, "upsample_nearest3d", "", "5.0, 4.0, 3.0");
baidu::mirana::poros::UnsampleNearest3DConverter unsamplenearest3dconverter;
interpolate_test_helper(graph_IR, &unsamplenearest3dconverter, {10, 2, 2, 2, 2});
}
// start almost equal
TEST(Converters, ATenUpsampleLinear1dWithAlignCorners) {
// aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_linear1d", "10", "1", "");
baidu::mirana::poros::UnsampleLinear1DConverter unsamplelinear1dconverter;
interpolate_test_helper(graph_IR, &unsamplelinear1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleLinear1dWithoutAlignCorners) {
// aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_linear1d", "10", "0", "5.0");
baidu::mirana::poros::UnsampleLinear1DConverter unsamplelinear1dconverter;
interpolate_test_helper(graph_IR, &unsamplelinear1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleLinear1dScalesWithoutAlignCorners) {
// aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_linear1d", "8", "0", "4.0");
baidu::mirana::poros::UnsampleLinear1DConverter unsamplelinear1dconverter;
interpolate_test_helper(graph_IR, &unsamplelinear1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleLinear1dVecScaleFactorsWithoutAlignCorners) {
// aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(true, "upsample_linear1d", "", "0", "4.0");
baidu::mirana::poros::UnsampleLinear1DConverter unsamplelinear1dconverter;
interpolate_test_helper(graph_IR, &unsamplelinear1dconverter, {10, 2, 2});
}
TEST(Converters, ATenUpsampleBilinear2dWithAlignCorners) {
// aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_bilinear2d", "10, 8", "1", "");
baidu::mirana::poros::UnsampleBilinear2DConverter unsamplebilinear2dconverter;
interpolate_test_helper(graph_IR, &unsamplebilinear2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleBilinear2dWithoutAlignCorners) {
// aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_bilinear2d", "10, 8", "0", "");
baidu::mirana::poros::UnsampleBilinear2DConverter unsamplebilinear2dconverter;
interpolate_test_helper(graph_IR, &unsamplebilinear2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleBilinear2dScalesWithoutAlignCorners) {
// aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_bilinear2d", "10, 10", "0", "5.0");
baidu::mirana::poros::UnsampleBilinear2DConverter unsamplebilinear2dconverter;
interpolate_test_helper(graph_IR, &unsamplebilinear2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleBilinear2dVecScaleFactorsWithoutAlignCorners) {
// aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(true, "upsample_bilinear2d", "", "0", "5.0, 4.0");
baidu::mirana::poros::UnsampleBilinear2DConverter unsamplebilinear2dconverter;
interpolate_test_helper(graph_IR, &unsamplebilinear2dconverter, {10, 2, 2, 2});
}
TEST(Converters, ATenUpsampleTrilinear3dWithAlignCorners) {
// aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_trilinear3d", "10, 8, 6", "1", "");
baidu::mirana::poros::UnsampleTrilinear3DConverter unsampletrilinear3dconverter;
interpolate_test_helper(graph_IR, &unsampletrilinear3dconverter, {10, 2, 2, 2, 2});
}
TEST(Converters, ATenUpsampleTrilinear3dWithoutAlignCorners) {
// aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(false, "upsample_trilinear3d", "10, 8, 6", "0", "");
baidu::mirana::poros::UnsampleTrilinear3DConverter unsampletrilinear3dconverter;
interpolate_test_helper(graph_IR, &unsampletrilinear3dconverter, {10, 2, 2, 2, 2});
}
TEST(Converters, ATenUpsampleTrilinear3dVecScaleFactorsWithoutAlignCorners) {
// aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
const auto graph_IR = gen_upsample_linear_graph(true, "upsample_trilinear3d", "", "0", "5.0, 4.0, 3.0");
baidu::mirana::poros::UnsampleTrilinear3DConverter unsampletrilinear3dconverter;
interpolate_test_helper(graph_IR, &unsampletrilinear3dconverter, {10, 2, 2, 2, 2});
}