Files
FastDeploy/poros/unittest/converter/element_wise_test.cpp
kiddyjinjin d38aa4560c [Backend]add poros to fastdeploy (#671)
* add poros to fastdeploy

* update readme

* update readme & add license for all files

* update benchmark

* update copyright for some files

Co-authored-by: tianjinjin <tianjinjin@baidu.com>
2022-11-28 14:08:18 +08:00

305 lines
13 KiB
C++

// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file element_wise_test.cpp
* @author tianshaoqing@baidu.com
* @date Wed Sep 27 11:24:21 CST 2021
* @brief
**/
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "poros/converter/gpu/element_wise.h"
#include "poros/util/test_util.h"
static void poros_test_helper(const std::string& graph_IR,
baidu::mirana::poros::IConverter* converter,
const std::vector<at::Tensor>& input_data){
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
// 运行原图与engine获取结果
std::vector<at::Tensor> graph_output;
std::vector<at::Tensor> poros_output;
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter,
input_data, graph_output, poros_output));
ASSERT_EQ(1, graph_output.size());
ASSERT_EQ(1, poros_output.size());
std::string pow_node_name("aten::pow");
if(converter->node_kind()[0].toQualString() == pow_node_name){
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
}else{
ASSERT_TRUE(graph_output[0].equal(poros_output[0]));
}
}
static void pow_test_examples(const std::string& graph_IR,
baidu::mirana::poros::IConverter* converter,
bool singleInput,
std::vector<int64_t> shape1 = {5},
std::vector<int64_t> shape2 = {5}){
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn(shape1, {at::kCUDA}));
if (!singleInput){
input_data.push_back(at::randint(-5, 5, shape2, {at::kCUDA}));
}
poros_test_helper(graph_IR, converter, input_data);
}
TEST(Converters, ATenPowTensorConvertsCorrectly) {
// aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor
const auto graph_IR = R"IR(
graph(%1 : Tensor, %2 : Tensor):
%3 : Tensor = aten::pow(%1, %2)
return (%3))IR";
baidu::mirana::poros::PowOrFloordivideConverter poworfloordivideconverter;
pow_test_examples(graph_IR, &poworfloordivideconverter, false);
pow_test_examples(graph_IR, &poworfloordivideconverter, false, {3, 4}, {4});
pow_test_examples(graph_IR, &poworfloordivideconverter, false, {4}, {3, 4});
pow_test_examples(graph_IR, &poworfloordivideconverter, false, {3, 4, 3}, {4, 3});
pow_test_examples(graph_IR, &poworfloordivideconverter, false, {4, 3}, {3, 4, 3});
}
TEST(Converters, ATenPowScalarConvertsCorrectly) {
// aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor
const auto graph_IR = R"IR(
graph(%1 : Tensor):
%2 : float = prim::Constant[value=2.0]()
%3 : Tensor = aten::pow(%1, %2)
return (%3))IR";
baidu::mirana::poros::PowOrFloordivideConverter poworfloordivideconverter;
pow_test_examples(graph_IR, &poworfloordivideconverter, true);
pow_test_examples(graph_IR, &poworfloordivideconverter, true, {3, 4});
}
static void elementwise_tensor_test_examples(const std::string& op,
baidu::mirana::poros::IConverter* converter){
const auto graph_IR = R"IR(
graph(%0 : Tensor, %1 : Tensor):
%2 : Tensor = aten::)IR" + op + R"IR((%0, %1)
return (%2))IR";
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
poros_test_helper(graph_IR, converter, input_data);
input_data.clear();
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
input_data[0][0][0] = 2.5;
input_data[1][0][0] = 2.5;
poros_test_helper(graph_IR, converter, input_data);
input_data.clear();
input_data.push_back(at::randn({3, 4, 3}, {at::kCUDA}));
input_data.push_back(at::randn({4, 3}, {at::kCUDA}));
input_data[0][0][0][0] = 2.5;
input_data[1][0][0] = 2.5;
poros_test_helper(graph_IR, converter, input_data);
input_data.clear();
input_data.push_back(at::randn({4, 3}, {at::kCUDA}));
input_data.push_back(at::randn({3, 4, 3}, {at::kCUDA}));
input_data[0][0][0] = 2.5;
input_data[1][0][0][0] = 2.5;
poros_test_helper(graph_IR, converter, input_data);
}
static void elementwise_scalar_test_examples(const std::string& op,
const std::string& scalar,
baidu::mirana::poros::IConverter* converter){
const auto graph_IR = R"IR(
graph(%0 : Tensor):
%1 : float = prim::Constant[value=)IR" + scalar + R"IR(]()
%2 : Tensor = aten::)IR" + op + R"IR((%0, %1)
return (%2))IR";
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
poros_test_helper(graph_IR, converter, input_data);
input_data.clear();
input_data.push_back(at::randn({2, 2}, {at::kCUDA}));
input_data[0][0][0] = 2.5;
poros_test_helper(graph_IR, converter, input_data);
input_data.clear();
input_data.push_back(at::randn({1}, {at::kCUDA}));
input_data[0][0] = 2.5;
poros_test_helper(graph_IR, converter, input_data);
}
TEST(Converters, ATenEqualTensorConvertsCorrectly) {
// aten::eq.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::EqualOrNotequalConverter equalorbotequalconverter;
elementwise_tensor_test_examples("eq", &equalorbotequalconverter);
}
TEST(Converters, ATenEqualScalarConvertsCorrectly) {
// aten::eq.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::EqualOrNotequalConverter equalorbotequalconverter;
elementwise_scalar_test_examples("eq", "2.5",&equalorbotequalconverter);
}
TEST(Converters, ATenNotEqualTensorConvertsCorrectly) {
// aten::ne.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::EqualOrNotequalConverter equalorbotequalconverter;
elementwise_tensor_test_examples("ne", &equalorbotequalconverter);
}
TEST(Converters, ATenNotEqualScalarConvertsCorrectly) {
// aten::ne.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::EqualOrNotequalConverter equalorbotequalconverter;
elementwise_scalar_test_examples("ne", "2.5", &equalorbotequalconverter);
}
TEST(Converters, ATenGtTensorConvertsCorrectly) {
// aten::gt.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_tensor_test_examples("gt", &greaterorlessconverter);
}
TEST(Converters, ATenGtScalarConvertsCorrectly) {
// aten::gt.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_scalar_test_examples("gt", "2.5", &greaterorlessconverter);
}
TEST(Converters, ATenLtTensorConvertsCorrectly) {
// aten::lt.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_tensor_test_examples("lt", &greaterorlessconverter);
}
TEST(Converters, ATenLtScalarConvertsCorrectly) {
// aten::lt.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_scalar_test_examples("lt", "2.5", &greaterorlessconverter);
}
TEST(Converters, ATenGeTensorConvertsCorrectly) {
// aten::ge.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_tensor_test_examples("ge", &greaterorlessconverter);
}
TEST(Converters, ATenGeScalarConvertsCorrectly) {
// aten::ge.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_scalar_test_examples("ge", "2.5", &greaterorlessconverter);
}
TEST(Converters, ATenLeTensorConvertsCorrectly) {
// aten::le.Tensor(Tensor self, Tensor other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_tensor_test_examples("le", &greaterorlessconverter);
}
TEST(Converters, ATenLeScalarConvertsCorrectly) {
// aten::le.Scalar(Tensor self, Scalar other) -> Tensor
baidu::mirana::poros::GreaterOrLessConverter greaterorlessconverter;
elementwise_scalar_test_examples("le", "2.5", &greaterorlessconverter);
}
static std::string gen_clamp_graph(const std::string& op,
const std::string& min_val,
const std::string& max_val){
if (op == "clamp"){
std::string min_val_IR;
std::string max_val_IR;
if (min_val.empty()){
min_val_IR = "None = prim::Constant()";
}else{
min_val_IR = "float = prim::Constant[value=" + min_val + "]()";
}
if (max_val.empty()){
max_val_IR = "None = prim::Constant()";
}else{
max_val_IR = "float = prim::Constant[value=" + max_val + "]()";
}
return R"IR(
graph(%0 : Tensor):
%1 : )IR" + min_val_IR + R"IR(
%2 : )IR" + max_val_IR + R"IR(
%3 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2)
return (%3))IR";
}else if (op == "clamp_min"){
return R"IR(
graph(%0 : Tensor):
%1 : float = prim::Constant[value=)IR" + min_val + R"IR(]()
%2 : Tensor = aten::)IR" + op + R"IR((%0, %1)
return (%2))IR";
}else if (op == "clamp_max"){
return R"IR(
graph(%0 : Tensor):
%1 : float = prim::Constant[value=)IR" + max_val + R"IR(]()
%2 : Tensor = aten::)IR" + op + R"IR((%0, %1)
return (%2))IR";
}else{
return "";
}
}
TEST(Converters, ATenClampMinConvertsCorrectly) {
// aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp", "1.5", "");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}
TEST(Converters, ATenClampMaxConvertsCorrectly) {
// aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp", "", "0.5");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}
TEST(Converters, ATenClampMinMaxConvertsCorrectly) {
// aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp", "-0.5", "0.5");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}
TEST(Converters, ATenClampMaximumConvertsCorrectly) {
// aten::clamp_max(Tensor self, Scalar max) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp_max", "", "0.5");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}
TEST(Converters, ATenClampMinimumConvertsCorrectly) {
// aten::clamp_min(Tensor self, Scalar min) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp_min", "-0.5", "");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}
TEST(Converters, ATenClampMinGtMaxConvertsCorrectly) {
// aten::clamp_min(Tensor self, Scalar min) -> Tensor
const auto graph_IR = gen_clamp_graph("clamp", "0.5", "-0.5");
baidu::mirana::poros::ClampConverter clampconverter;
std::vector<at::Tensor> input_data;
input_data.push_back(at::randn({10}, {at::kCUDA}));
poros_test_helper(graph_IR, &clampconverter, input_data);
}