mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
123 lines
3.8 KiB
C++
123 lines
3.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
// Before:
|
|
// X = Constant() all elements equal to 1, shape is () or (1,)
|
|
// Y = Tensor()
|
|
// C = X * Y
|
|
// After:
|
|
// C = Identity(Y)
|
|
|
|
#include <numeric>
|
|
#include <cmath>
|
|
#include "onnx/defs/tensor_util.h"
|
|
#include "onnxoptimizer/pass.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace optimization {
|
|
|
|
struct ReplaceMulToIdentity final : public PredicateBasedPass {
|
|
explicit ReplaceMulToIdentity()
|
|
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
|
|
PassOptimizationType::Compute) {}
|
|
|
|
std::string getPassName() const override {
|
|
return "replace_mul_to_identity";
|
|
}
|
|
|
|
bool patternMatchPredicate(Node* node) override {
|
|
return node->kind() == kMul &&
|
|
(node->inputs()[0]->node()->kind() == kConstant || node->inputs()[1]->node()->kind() == kConstant);
|
|
}
|
|
|
|
bool runTransform(Node* n, Graph& graph,
|
|
NodeDestroyType& destroy_current) override {
|
|
Node* mul_node = n;
|
|
Node* mul_ipt_0 = n->inputs()[0]->node();
|
|
Node* mul_ipt_1 = n->inputs()[1]->node();
|
|
|
|
if (mul_ipt_0->kind() == kConstant) {
|
|
auto scale = mul_ipt_0->t(kvalue);
|
|
if (scale.sizes().size() == 1 && scale.sizes()[0] != 1) {
|
|
return false;
|
|
}
|
|
if (scale.sizes().size() > 1) {
|
|
return false;
|
|
}
|
|
const auto& float_data = scale.floats();
|
|
if (float_data.size() > 0 && fabs(float_data[0] - 1.0) > 1e-05) {
|
|
return false;
|
|
}
|
|
const auto& double_data = scale.doubles();
|
|
if (double_data.size() > 0 && fabs(double_data[0] - 1.0) > 1e-05) {
|
|
return false;
|
|
}
|
|
const auto& int32_data = scale.int32s();
|
|
if (int32_data.size() > 0 && int32_data[0] != 1) {
|
|
return false;
|
|
}
|
|
const auto& int64_data = scale.int64s();
|
|
if (int64_data.size() > 0 && int64_data[0] != 1) {
|
|
return false;
|
|
}
|
|
if (float_data.size() == 0 && double_data.size() == 0 && int32_data.size() == 0 && int64_data.size() == 0) {
|
|
return false;
|
|
}
|
|
if (!tryReplacingAllUsesWith(mul_node->output(), mul_node->inputs()[1])) {
|
|
return false;
|
|
}
|
|
} else {
|
|
auto scale = mul_ipt_1->t(kvalue);
|
|
if (scale.sizes().size() == 1 && scale.sizes()[0] != 1) {
|
|
return false;
|
|
}
|
|
if (scale.sizes().size() > 1) {
|
|
return false;
|
|
}
|
|
const auto& float_data = scale.floats();
|
|
if (float_data.size() > 0 && fabs(float_data[0] - 1.0) > 1e-05) {
|
|
return false;
|
|
}
|
|
const auto& double_data = scale.doubles();
|
|
if (double_data.size() > 0 && fabs(double_data[0] - 1.0) > 1e-05) {
|
|
return false;
|
|
}
|
|
const auto& int32_data = scale.int32s();
|
|
if (int32_data.size() > 0 && int32_data[0] != 1) {
|
|
return false;
|
|
}
|
|
const auto& int64_data = scale.int64s();
|
|
if (int64_data.size() > 0 && int64_data[0] != 1) {
|
|
return false;
|
|
}
|
|
if (float_data.size() == 0 && double_data.size() == 0 && int32_data.size() == 0 && int64_data.size() == 0) {
|
|
return false;
|
|
}
|
|
if (!tryReplacingAllUsesWith(mul_node->output(), mul_node->inputs()[0])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace optimization
|
|
} // namespace ONNX_NAMESPACE
|