Files
FastDeploy/paddle2onnx/optimizer/fuse_unsqueeze_conv2d_squeeze.h
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

171 lines
5.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
// Before:
// X = Tensor(N, C, H)
// B = Unsqueeze(X, 2)
// C = Conv2d(B)
// D = Squeeze(C, 2)
// After:
// D = Conv1d(X)
#include <numeric>
#include "onnx/defs/tensor_util.h"
#include "onnxoptimizer/pass.h"
namespace ONNX_NAMESPACE {
namespace optimization {
struct FuseUnsqueezeConv2dSqueeze final : public PredicateBasedPass {
explicit FuseUnsqueezeConv2dSqueeze()
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
PassOptimizationType::Compute) {}
std::string getPassName() const override {
return "fuse_unsqueeze_conv2d_squeeze";
}
bool patternMatchPredicate(Node* node) override {
return node->kind() == kSqueeze &&
node->inputs()[0]->node()->kind() == kConv &&
node->inputs()[0]->node()->inputs()[0]->node()->kind() == kUnsqueeze;
}
bool runTransform(Node* n, Graph& graph,
NodeDestroyType& destroy_current) override {
Node* squeeze_node = n;
Node* conv_node = n->inputs()[0]->node();
Node* unsqueeze_node = conv_node->inputs()[0]->node();
if (squeeze_node->inputs()[0]->uses().size() > 1) {
return false;
}
if (conv_node->inputs()[0]->uses().size() > 1) {
return false;
}
Node* weight_node = conv_node->inputs()[1]->node();
if (weight_node->kind() != kConstant) {
return false;
}
Tensor weight = weight_node->t(kvalue);
if (weight.sizes().size() != 4) {
return false;
}
if (weight.sizes()[2] != 1) {
return false;
}
{
std::vector<int64_t> axes;
if (squeeze_node->hasAttribute(kaxes)) {
// opset 12 and below
axes = squeeze_node->is(kaxes);
} else {
// opset 13 and above
if (squeeze_node->inputs()[1]->node()->kind() != kConstant) {
return false;
}
if (squeeze_node->inputs()[1]->uses().size() > 1) {
return false;
}
Tensor t = squeeze_node->inputs()[1]->node()->t(kvalue);
axes = ParseData<int64_t>(&t);
}
if (axes.size() != 1 || axes[0] != 2) {
return false;
}
}
{
std::vector<int64_t> axes;
if (unsqueeze_node->hasAttribute(kaxes)) {
// opset 12 and below
axes = unsqueeze_node->is(kaxes);
} else {
// opset 13 and above
if (unsqueeze_node->inputs()[1]->node()->kind() != kConstant) {
return false;
}
if (unsqueeze_node->inputs()[1]->uses().size() > 1) {
return false;
}
Tensor t = unsqueeze_node->inputs()[1]->node()->t(kvalue);
axes = ParseData<int64_t>(&t);
}
if (axes.size() != 1 || axes[0] != 2) {
return false;
}
}
// update conv weight
weight.sizes().erase(weight.sizes().begin() + 2);
weight_node->t_(kvalue, std::move(weight));
if (conv_node->hasAttribute(kdilations)) {
std::vector<int64_t> dilations = conv_node->is(kdilations);
if (dilations.size() != 2 || dilations[0] != 1) {
return false;
}
dilations.erase(dilations.begin() + 0);
conv_node->is_(kdilations, std::move(dilations));
}
if (conv_node->hasAttribute(kkernel_shape)) {
std::vector<int64_t> kernel_shape = conv_node->is(kkernel_shape);
if (kernel_shape.size() != 2 || kernel_shape[0] != 1) {
return false;
}
kernel_shape.erase(kernel_shape.begin() + 0);
conv_node->is_(kkernel_shape, std::move(kernel_shape));
}
if (conv_node->hasAttribute(kpads)) {
std::vector<int64_t> pads = conv_node->is(kpads);
if (pads.size() != 4 || pads[0] != 0 || pads[2] != 0) {
return false;
}
pads.erase(pads.begin() + 2);
pads.erase(pads.begin() + 0);
conv_node->is_(kpads, std::move(pads));
}
if (conv_node->hasAttribute(kstrides)) {
std::vector<int64_t> strides = conv_node->is(kstrides);
if (strides.size() != 2 || strides[0] != 1) {
return false;
}
strides.erase(strides.begin() + 0);
conv_node->is_(kstrides, std::move(strides));
}
conv_node->replaceInput(0, unsqueeze_node->inputs()[0]);
if (!tryReplacingAllUsesWith(unsqueeze_node->output(),
unsqueeze_node->inputs()[0])) {
return false;
}
if (!tryReplacingAllUsesWith(squeeze_node->output(),
squeeze_node->inputs()[0])) {
return false;
}
// unsqueeze_node->destroy();
// squeeze_node->destroy();
// destroy_current = NodeDestroyType::DestroyZero;
return true;
}
};
} // namespace optimization
} // namespace ONNX_NAMESPACE