mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
97 lines
3.0 KiB
C++
97 lines
3.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
// Only support conv2d + bias now
|
|
|
|
#include <numeric>
|
|
|
|
#include "onnx/defs/tensor_util.h"
|
|
#include "onnxoptimizer/pass.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace optimization {
|
|
|
|
struct FusePaddleConvBias final : public PredicateBasedPass {
|
|
explicit FusePaddleConvBias()
|
|
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
|
|
PassOptimizationType::Compute) {}
|
|
std::string getPassName() const override { return "fuse_paddle_conv_bias"; }
|
|
|
|
bool patternMatchPredicate(Node* node) override {
|
|
return node->kind() == kAdd && node->inputs()[0]->node()->kind() == kConv &&
|
|
node->inputs()[1]->node()->kind() == kConstant &&
|
|
node->inputs()[0]->node()->inputs()[1]->node()->kind() == kConstant;
|
|
}
|
|
bool runTransform(Node* n, Graph& graph,
|
|
NodeDestroyType& destroy_current) override {
|
|
destroy_current = NodeDestroyType::DestroyZero;
|
|
|
|
// check if Conv is only used by Add
|
|
if (n->inputs()[0]->uses().size() > 1) {
|
|
return false;
|
|
}
|
|
// check if bias is only used by Add
|
|
if (n->inputs()[1]->uses().size() > 1) {
|
|
return false;
|
|
}
|
|
|
|
Node* add = n;
|
|
Node* conv = n->inputs()[0]->node();
|
|
Node* bias = n->inputs()[1]->node();
|
|
Node* weight = conv->inputs()[1]->node();
|
|
|
|
if (conv->inputs().size() > 2) {
|
|
return false;
|
|
}
|
|
|
|
Tensor bias_tensor = bias->t(kvalue);
|
|
Tensor weight_tensor = weight->t(kvalue);
|
|
const auto& bias_shape = bias_tensor.sizes();
|
|
const auto& weight_shape = weight_tensor.sizes();
|
|
if (bias_shape.size() != 4 || bias_shape.size() != weight_shape.size()) {
|
|
return false;
|
|
}
|
|
if (bias_shape[0] != 1 || bias_shape[2] != 1 || bias_shape[3] != 1) {
|
|
return false;
|
|
}
|
|
if (bias_shape[1] != weight_shape[0]) {
|
|
return false;
|
|
}
|
|
// reshape bias node
|
|
bias_tensor.sizes().clear();
|
|
bias_tensor.sizes().push_back(weight_shape[0]);
|
|
bias->t_(kvalue, std::move(bias_tensor));
|
|
|
|
conv->addInput(bias->outputs()[0]);
|
|
conv->output()->setSizes(add->output()->sizes());
|
|
conv->output()->setElemType(add->output()->elemType());
|
|
const bool replacing_success =
|
|
tryReplacingAllUsesWith(add->output(), add->inputs()[0]);
|
|
if (!replacing_success) {
|
|
return false;
|
|
}
|
|
destroy_current = NodeDestroyType::DestroyOne;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace optimization
|
|
} // namespace ONNX_NAMESPACE
|