Files
FastDeploy/paddle2onnx/optimizer/fuse_paddle_conv_bias.h
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

97 lines
3.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
// Only support conv2d + bias now
#include <numeric>
#include "onnx/defs/tensor_util.h"
#include "onnxoptimizer/pass.h"
namespace ONNX_NAMESPACE {
namespace optimization {
struct FusePaddleConvBias final : public PredicateBasedPass {
explicit FusePaddleConvBias()
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
PassOptimizationType::Compute) {}
std::string getPassName() const override { return "fuse_paddle_conv_bias"; }
bool patternMatchPredicate(Node* node) override {
return node->kind() == kAdd && node->inputs()[0]->node()->kind() == kConv &&
node->inputs()[1]->node()->kind() == kConstant &&
node->inputs()[0]->node()->inputs()[1]->node()->kind() == kConstant;
}
bool runTransform(Node* n, Graph& graph,
NodeDestroyType& destroy_current) override {
destroy_current = NodeDestroyType::DestroyZero;
// check if Conv is only used by Add
if (n->inputs()[0]->uses().size() > 1) {
return false;
}
// check if bias is only used by Add
if (n->inputs()[1]->uses().size() > 1) {
return false;
}
Node* add = n;
Node* conv = n->inputs()[0]->node();
Node* bias = n->inputs()[1]->node();
Node* weight = conv->inputs()[1]->node();
if (conv->inputs().size() > 2) {
return false;
}
Tensor bias_tensor = bias->t(kvalue);
Tensor weight_tensor = weight->t(kvalue);
const auto& bias_shape = bias_tensor.sizes();
const auto& weight_shape = weight_tensor.sizes();
if (bias_shape.size() != 4 || bias_shape.size() != weight_shape.size()) {
return false;
}
if (bias_shape[0] != 1 || bias_shape[2] != 1 || bias_shape[3] != 1) {
return false;
}
if (bias_shape[1] != weight_shape[0]) {
return false;
}
// reshape bias node
bias_tensor.sizes().clear();
bias_tensor.sizes().push_back(weight_shape[0]);
bias->t_(kvalue, std::move(bias_tensor));
conv->addInput(bias->outputs()[0]);
conv->output()->setSizes(add->output()->sizes());
conv->output()->setElemType(add->output()->elemType());
const bool replacing_success =
tryReplacingAllUsesWith(add->output(), add->inputs()[0]);
if (!replacing_success) {
return false;
}
destroy_current = NodeDestroyType::DestroyOne;
return true;
}
};
} // namespace optimization
} // namespace ONNX_NAMESPACE