mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
139 lines
4.1 KiB
C++
139 lines
4.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
// Before:
|
|
// B = Reshape(Constant)
|
|
// After:
|
|
// B = Constant (Constant with new shape)
|
|
|
|
#include <numeric>
|
|
|
|
#include "onnx/defs/tensor_util.h"
|
|
#include "onnxoptimizer/pass.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace optimization {
|
|
|
|
struct FuseConstantReshape final : public PredicateBasedPass {
|
|
explicit FuseConstantReshape()
|
|
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
|
|
PassOptimizationType::Compute) {}
|
|
std::string getPassName() const override { return "fuse_constant_reshape"; }
|
|
|
|
bool patternMatchPredicate(Node* node) override {
|
|
return node->kind() == kReshape &&
|
|
node->inputs()[0]->node()->kind() == kConstant;
|
|
}
|
|
bool runTransform(Node* n, Graph& graph,
|
|
NodeDestroyType& destroy_current) override {
|
|
destroy_current = NodeDestroyType::DestroyZero;
|
|
|
|
// check if Constant is only used by Reshape
|
|
if (n->inputs()[0]->uses().size() > 1) {
|
|
return false;
|
|
}
|
|
|
|
Node* reshape = n;
|
|
Node* constant = n->inputs()[0]->node();
|
|
|
|
// Process 'reshape' data
|
|
std::vector<int64_t> shape;
|
|
if (reshape->hasAttribute(kshape)) {
|
|
// opset 5 and below
|
|
shape = reshape->is(kshape);
|
|
} else {
|
|
// opset 6 and above - first check if 'reshape' has 'shape' input
|
|
// constant
|
|
if (reshape->inputs()[1]->node()->kind() != kConstant) {
|
|
return false;
|
|
}
|
|
if (reshape->inputs()[1]->uses().size() > 1) {
|
|
return false;
|
|
}
|
|
Node* shape_const = reshape->inputs()[1]->node();
|
|
Tensor t = shape_const->t(kvalue);
|
|
shape = ParseData<int64_t>(&t);
|
|
}
|
|
|
|
int allow_zero = 0;
|
|
Symbol sym = Symbol("allowzero");
|
|
if (reshape->hasAttribute(sym)) {
|
|
allow_zero = reshape->i(sym);
|
|
}
|
|
|
|
Tensor t = constant->t(kvalue);
|
|
const auto& ori_size = t.sizes();
|
|
|
|
// process 0 in shape
|
|
if (allow_zero != 0) {
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == 0) {
|
|
// illegal situation
|
|
if (ori_size.size() <= i) {
|
|
return false;
|
|
}
|
|
shape[i] = ori_size[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// process -1 in shape
|
|
int count_of_unkown = 0;
|
|
int index_of_unkown = -1;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == -1) {
|
|
count_of_unkown += 1;
|
|
index_of_unkown = i;
|
|
}
|
|
}
|
|
// illegal situtaion
|
|
if (count_of_unkown > 1) {
|
|
return false;
|
|
}
|
|
int64_t numel = std::accumulate(ori_size.begin(), ori_size.end(), 1,
|
|
std::multiplies<int>());
|
|
if (index_of_unkown >= 0) {
|
|
int64_t value_of_unkown = -1 * numel /
|
|
std::accumulate(shape.begin(), shape.end(), 1,
|
|
std::multiplies<int>());
|
|
shape[index_of_unkown] = value_of_unkown;
|
|
}
|
|
|
|
t.sizes().clear();
|
|
t.sizes().insert(t.sizes().begin(), shape.begin(),
|
|
shape.begin() + shape.size());
|
|
constant->t_(kvalue, std::move(t));
|
|
|
|
// update constant node
|
|
constant->output()->setSizes(reshape->output()->sizes());
|
|
constant->output()->setElemType(reshape->output()->elemType());
|
|
const bool replacing_success =
|
|
tryReplacingAllUsesWith(reshape->output(), reshape->inputs()[0]);
|
|
if (!replacing_success) {
|
|
return false;
|
|
}
|
|
destroy_current = NodeDestroyType::DestroyOne;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace optimization
|
|
} // namespace ONNX_NAMESPACE
|