Files
FastDeploy/paddle2onnx/mapper/tensor/reduce.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

145 lines
5.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/tensor/reduce.h"
namespace paddle2onnx {
REGISTER_MAPPER(reduce_mean, ReduceMapper)
REGISTER_MAPPER(reduce_sum, ReduceMapper)
REGISTER_MAPPER(reduce_min, ReduceMapper)
REGISTER_MAPPER(reduce_max, ReduceMapper)
REGISTER_MAPPER(reduce_prod, ReduceMapper)
REGISTER_MAPPER(logsumexp, ReduceMapper)
REGISTER_MAPPER(reduce_all, ReduceMapper)
REGISTER_MAPPER(reduce_any, ReduceMapper)
int32_t ReduceMapper::GetMinOpset(bool verbose) {
std::string axis_name;
if (OpType() == "logsumexp") {
axis_name = "axis";
} else {
axis_name = "dim";
}
if (IsAttrVar(axis_name) && !IsConstant(GetAttrVar(axis_name)[0])) {
if (OpType() == "reduce_sum") {
return 13;
}
Error() << "While Attribute(" << axis_name
<< ")'s type is Tensor, it's not supported "
"unless it's a constant tensor."
<< std::endl;
return -1;
}
return 7;
}
void ReduceMapper::Opset7() {
auto x_info = GetInput("X");
auto out_info = GetOutput("Out");
std::map<std::string, std::string> op_map;
op_map["reduce_mean"] = "ReduceMean";
op_map["reduce_sum"] = "ReduceSum";
op_map["reduce_min"] = "ReduceMin";
op_map["reduce_max"] = "ReduceMax";
op_map["reduce_prod"] = "ReduceProd";
op_map["logsumexp"] = "ReduceLogSumExp";
std::string out = "";
std::string axis_name;
if (OpType() == "logsumexp") {
axis_name = "axis";
} else {
axis_name = "dim";
}
if (IsAttrVar(axis_name)) {
auto info = GetAttrVar(axis_name);
TryGetValue(info[0], &dim_);
} else {
GetAttr(axis_name, &dim_);
}
bool reduce_all_axes = dim_.size() == x_info[0].Rank();
if (reduce_all_) {
reduce_all_axes = true;
}
if (helper_->GetOpsetVersion() >= 13 && OpType() == "reduce_sum") {
std::string dims = "";
if (IsAttrVar(axis_name)) {
auto info = GetAttrVar(axis_name);
dims = helper_->AutoCast(info[0].name, info[0].dtype, P2ODataType::INT64);
} else {
if (!reduce_all_) {
dims = helper_->Constant(ONNX_NAMESPACE::TensorProto::INT64, dim_);
} else {
dims = helper_->Constant(ONNX_NAMESPACE::TensorProto::INT64,
Arange(0, x_info[0].Rank()));
}
}
auto reduce_node =
helper_->MakeNode(op_map[OpType()], {x_info[0].name, dims});
AddAttribute(reduce_node, "keepdims", static_cast<int64_t>(keep_dim_));
out = reduce_node->output(0);
} else if (OpType() == "reduce_all") {
auto int32_x =
helper_->AutoCast(x_info[0].name, x_info[0].dtype, P2ODataType::INT32);
auto reduce_node = helper_->MakeNode("ReduceMin", {int32_x});
if (!reduce_all_) {
AddAttribute(reduce_node, "axes", dim_);
} else {
AddAttribute(reduce_node, "axes", Arange(0, x_info[0].Rank()));
}
AddAttribute(reduce_node, "keepdims", static_cast<int64_t>(keep_dim_));
out = helper_->AutoCast(reduce_node->output(0), P2ODataType::INT32,
P2ODataType::BOOL);
} else if (OpType() == "reduce_any") {
auto int32_x =
helper_->AutoCast(x_info[0].name, x_info[0].dtype, P2ODataType::INT32);
auto reduce_node = helper_->MakeNode("ReduceMax", {int32_x});
if (!reduce_all_) {
AddAttribute(reduce_node, "axes", dim_);
} else {
AddAttribute(reduce_node, "axes", Arange(0, x_info[0].Rank()));
}
AddAttribute(reduce_node, "keepdims", static_cast<int64_t>(keep_dim_));
out = helper_->AutoCast(reduce_node->output(0), P2ODataType::INT32,
P2ODataType::BOOL);
} else {
std::string input_name = x_info[0].name;
if (OpType() == "reduce_prod" && x_info[0].dtype == P2ODataType::FP64) {
input_name = helper_->AutoCast(x_info[0].name, P2ODataType::FP64,
P2ODataType::FP32);
}
auto reduce_node = helper_->MakeNode(op_map[OpType()], {input_name});
if (!reduce_all_) {
AddAttribute(reduce_node, "axes", dim_);
} else {
AddAttribute(reduce_node, "axes", Arange(0, x_info[0].Rank()));
}
AddAttribute(reduce_node, "keepdims", static_cast<int64_t>(keep_dim_));
out = reduce_node->output(0);
if (OpType() == "reduce_prod" && x_info[0].dtype == P2ODataType::FP64) {
out = helper_->AutoCast(reduce_node->output(0), P2ODataType::FP32,
P2ODataType::FP64);
}
}
if (!keep_dim_ && reduce_all_axes) {
out = helper_->Reshape(out, {-1});
}
helper_->AutoCast(out, out_info[0].name, x_info[0].dtype, out_info[0].dtype);
}
} // namespace paddle2onnx