Files
FastDeploy/paddle2onnx/mapper/tensor/lookup_table.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

133 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/tensor/lookup_table.h"
#include <iostream>
#include <string>
#include <vector>
namespace paddle2onnx {
REGISTER_MAPPER(lookup_table, LookupTableMapper)
REGISTER_MAPPER(lookup_table_v2, LookupTableMapper)
int32_t LookupTableMapper::GetMinOpset(bool verbose) {
auto input_w_info = GetInput("W");
bool has_minus = false;
for (auto i : input_w_info[0].shape) {
has_minus = (i == -1);
if (has_minus) {
break;
}
}
if (padding_idx_ != -1 && has_minus) {
Logger(verbose, 11)
<< "While the input W has dynamic shape and padding_idx != -1, "
<< RequireOpset(11) << std::endl;
return 11;
}
return 7;
}
void LookupTableMapper::Opset7() {
auto input_ids_info = GetInput("Ids");
auto input_w_info = GetInput("W");
auto output_info = GetOutput("Out");
std::string ids_node = input_ids_info[0].name;
auto ids_shape = input_ids_info[0].shape;
if (OpType() == "lookup_table" && ids_shape[ids_shape.size() - 1] == 1) {
ids_node = helper_->Squeeze(input_ids_info[0].name, {-1});
}
auto input_shape = input_w_info[0].shape;
int64_t sum_val = 1;
for (auto i : input_shape) {
sum_val *= i;
}
int interval = sum_val / input_shape[0];
if (padding_idx_ != -1) {
std::vector<int64_t> data(sum_val, 1);
for (auto i = 0; i < interval; i++) {
data[padding_idx_ * interval + i] = 0;
}
std::string constant = helper_->Constant(
input_shape, GetOnnxDtype(input_w_info[0].dtype), data);
auto weight_node =
helper_->MakeNode("Mul", {input_w_info[0].name, constant});
helper_->MakeNode("Gather", {weight_node->output(0), ids_node},
{output_info[0].name});
} else {
helper_->MakeNode("Gather", {input_w_info[0].name, ids_node},
{output_info[0].name});
}
}
void LookupTableMapper::Opset11() {
auto input_ids_info = GetInput("Ids");
auto input_w_info = GetInput("W");
auto output_info = GetOutput("Out");
std::string ids_node = input_ids_info[0].name;
auto ids_shape = input_ids_info[0].shape;
if (OpType() == "lookup_table" && ids_shape[ids_shape.size() - 1] == 1) {
ids_node = helper_->Squeeze(input_ids_info[0].name, {-1});
}
auto input_shape = input_w_info[0].shape;
int64_t sum_val = 1;
for (auto i : input_shape) {
sum_val *= i;
}
int interval = sum_val / input_shape[0];
if (padding_idx_ != -1) {
bool has_minus = false;
for (auto i : input_w_info[0].shape) {
has_minus = (i == -1);
if (has_minus) {
break;
}
}
if (has_minus) {
std::vector<int64_t> shape = {interval};
std::string replace_data =
helper_->Constant(shape, GetOnnxDtype(input_w_info[0].dtype), 0.0);
std::string index = helper_->Constant(
{1}, ONNX_NAMESPACE::TensorProto::INT64, padding_idx_);
auto scatter_node = helper_->MakeNode(
"ScatterND", {input_w_info[0].name, index, replace_data});
helper_->MakeNode("Gather", {scatter_node->output(0), ids_node},
{output_info[0].name});
} else {
std::vector<int64_t> data(sum_val, 1);
for (auto i = 0; i < interval; i++) {
data[padding_idx_ * interval + i] = 0;
}
std::string constant = helper_->Constant(
input_shape, GetOnnxDtype(input_w_info[0].dtype), data);
auto weight_node =
helper_->MakeNode("Mul", {input_w_info[0].name, constant});
helper_->MakeNode("Gather", {weight_node->output(0), ids_node},
{output_info[0].name});
}
} else {
helper_->MakeNode("Gather", {input_w_info[0].name, ids_node},
{output_info[0].name});
}
}
} // namespace paddle2onnx