Files
FastDeploy/paddle2onnx/mapper/tensor/flip.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

90 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/tensor/flip.h"
namespace paddle2onnx {
REGISTER_MAPPER(flip, FlipMapper)
int32_t FlipMapper::GetMinOpset(bool verbose) {
auto input_info = parser_->GetOpInput(block_idx_, op_idx_, "X");
for (auto i = 0; i < axes_.size(); i++) {
if (input_info[0].shape[axes_[i]] <= 0) {
Error() << "The dimension in axis of input must be fixed for flip "
"operator, but now the input shape in axis is unkown."
<< std::endl;
return -1;
}
}
return 7;
}
void FlipMapper::Opset7() {
auto input_info = GetInput("X");
auto output_info = GetOutput("Out");
std::string input_name = input_info[0].name;
bool need_convert = false;
if (input_info[0].dtype == P2ODataType::BOOL ||
input_info[0].dtype == P2ODataType::FP64) {
need_convert = true;
input_name = helper_->AutoCast(input_info[0].name, input_info[0].dtype,
P2ODataType::FP32);
}
std::string temp_input = input_name;
for (auto i = 0; i < axes_.size(); ++i) {
int64_t axis = axes_[i];
if (input_info[0].shape[axis] == 1) {
if (i != axes_.size() - 1) {
continue;
}
if (need_convert) {
input_name = helper_->AutoCast(temp_input, output_info[0].name,
P2ODataType::FP32, output_info[0].dtype);
} else {
auto out_node =
helper_->MakeNode("Identity", {temp_input}, {output_info[0].name});
}
} else {
std::vector<int64_t> split;
split.resize(input_info[0].shape[axis], 1);
std::vector<std::string> splits_outputs =
helper_->Split(temp_input, split, axis);
std::vector<std::string> reversed_splits;
for (int64_t index = splits_outputs.size() - 1; index >= 0; --index) {
reversed_splits.push_back(splits_outputs[index]);
}
if (i != axes_.size() - 1) {
auto concat_node = helper_->MakeNode("Concat", reversed_splits);
AddAttribute(concat_node, "axis", axis);
temp_input = concat_node->output(0);
} else {
if (need_convert) {
auto concat_node = helper_->MakeNode("Concat", reversed_splits);
AddAttribute(concat_node, "axis", axis);
helper_->AutoCast(concat_node->output(0), output_info[0].name,
P2ODataType::FP32, output_info[0].dtype);
} else {
auto concat_node = helper_->MakeNode("Concat", reversed_splits,
{output_info[0].name});
AddAttribute(concat_node, "axis", axis);
}
}
}
}
}
} // namespace paddle2onnx