mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
154 lines
5.7 KiB
C++
154 lines
5.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle2onnx/mapper/tensor/fill_constant.h"
|
|
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
namespace paddle2onnx {
|
|
|
|
REGISTER_MAPPER(fill_constant, FillConstantMapper)
|
|
|
|
int32_t FillConstantMapper::GetMinOpset(bool verbose) {
|
|
auto out_info = GetOutput("Out");
|
|
auto onnx_dtype = GetOnnxDtype(out_info[0].dtype);
|
|
if (onnx_dtype != ONNX_NAMESPACE::TensorProto::INT32 &&
|
|
onnx_dtype != ONNX_NAMESPACE::TensorProto::INT64 &&
|
|
onnx_dtype != ONNX_NAMESPACE::TensorProto::FLOAT &&
|
|
onnx_dtype != ONNX_NAMESPACE::TensorProto::DOUBLE) {
|
|
Error() << "Only support int32/int64/float32/float64 data type in "
|
|
"fill_constant operator."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
if (HasInput("ShapeTensorList")) {
|
|
Logger(verbose, 9) << "While ShapeTensorList as input, " << RequireOpset(9) << std::endl;
|
|
return 9;
|
|
}
|
|
if (HasInput("ShapeTensor") && !IsConstantInput("ShapeTensor")) {
|
|
Logger(verbose, 9) << "While ShapeTensor as input and it's not a constant tensor, " << RequireOpset(9) << std::endl;
|
|
return 9;
|
|
}
|
|
return 7;
|
|
}
|
|
|
|
float FillConstantMapper::GetFillValue() {
|
|
float value = 0;
|
|
if (str_value_.empty()) {
|
|
value = value_;
|
|
} else {
|
|
if (str_value_ == "inf") {
|
|
value = std::numeric_limits<float>::infinity();
|
|
} else if (str_value_ == "-inf") {
|
|
value = -std::numeric_limits<float>::infinity();
|
|
} else if (str_value_ == "nan") {
|
|
value = std::numeric_limits<float>::quiet_NaN();
|
|
} else {
|
|
std::stringstream convert_stream(str_value_);
|
|
convert_stream >> value;
|
|
}
|
|
}
|
|
if (HasInput("ValueTensor")) {
|
|
value = 0.0;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
void FillConstantMapper::Opset7() {
|
|
auto out_info = GetOutput("Out");
|
|
Assert(!HasInput("ShapeTensorList"), "While ShapeTensorList as input, requires opset_version>=9 for op fill_constant.");
|
|
std::vector<int64_t> shape;
|
|
if (HasInput("ShapeTensor")) {
|
|
Assert(TryGetInputValue("ShapeTensor", &shape), "While ShapeTensor as input and it's not a constant tensor, requires opset_version>=9 for op fill_constant.");
|
|
} else {
|
|
GetAttr("shape", &shape);
|
|
}
|
|
float value = GetFillValue();
|
|
if (HasInput("ValueTensor")) {
|
|
auto value_info = GetInput("ValueTensor");
|
|
auto value_tensor = helper_->AutoCast(value_info[0].name, value_info[0].dtype, out_info[0].dtype);
|
|
auto out = helper_->Constant(shape, GetOnnxDtype(out_info[0].dtype), float(0.0));
|
|
helper_->MakeNode("Add", {out, value_tensor}, {out_info[0].name});
|
|
} else {
|
|
helper_->Constant(out_info[0].name, shape, GetOnnxDtype(out_info[0].dtype), value);
|
|
}
|
|
}
|
|
|
|
void FillConstantMapper::Opset9() {
|
|
if (GetMinOpset() == 7) {
|
|
return Opset7();
|
|
}
|
|
auto out_info = GetOutput("Out");
|
|
bool shape_is_tensor = HasInput("ShapeTensor") || HasInput("ShapeTensorList");
|
|
bool value_is_tensor = HasInput("ValueTensor");
|
|
auto onnx_dtype = GetOnnxDtype(out_info[0].dtype);
|
|
float value = GetFillValue();
|
|
std::string out;
|
|
if (shape_is_tensor) {
|
|
std::string shape_name;
|
|
if (HasInput("ShapeTensor")) {
|
|
auto shape_info = GetInput("ShapeTensor");
|
|
shape_name = helper_->AutoCast(shape_info[0].name, shape_info[0].dtype,
|
|
P2ODataType::INT64);
|
|
} else {
|
|
auto shape_info = GetInput("ShapeTensorList");
|
|
shape_name = helper_->ConcatIndices(shape_info);
|
|
}
|
|
|
|
auto node = helper_->MakeNode("ConstantOfShape", {shape_name});
|
|
auto attr = node->add_attribute();
|
|
attr->set_name("value");
|
|
attr->set_type(ONNX_NAMESPACE::AttributeProto::TENSOR);
|
|
auto tensor = attr->mutable_t();
|
|
tensor->set_name(out_info[0].name);
|
|
tensor->set_data_type(onnx_dtype);
|
|
tensor->add_dims(1);
|
|
if (onnx_dtype == ONNX_NAMESPACE::TensorProto::INT32) {
|
|
std::vector<int32_t> data(1);
|
|
data[0] = static_cast<int32_t>(value);
|
|
auto ptr = reinterpret_cast<char*>(data.data());
|
|
tensor->set_raw_data(std::string(ptr, sizeof(int32_t)));
|
|
} else if (onnx_dtype == ONNX_NAMESPACE::TensorProto::INT64) {
|
|
std::vector<int64_t> data(1);
|
|
data[0] = static_cast<int64_t>(value);
|
|
auto ptr = reinterpret_cast<char*>(data.data());
|
|
tensor->set_raw_data(std::string(ptr, sizeof(int64_t)));
|
|
} else if (onnx_dtype == ONNX_NAMESPACE::TensorProto::FLOAT) {
|
|
std::vector<float> data(1, value_);
|
|
auto ptr = reinterpret_cast<char*>(data.data());
|
|
tensor->set_raw_data(std::string(ptr, sizeof(float)));
|
|
} else if (onnx_dtype == ONNX_NAMESPACE::TensorProto::DOUBLE) {
|
|
std::vector<double> data(1);
|
|
data[0] = static_cast<double>(value);
|
|
auto ptr = reinterpret_cast<char*>(data.data());
|
|
tensor->set_raw_data(std::string(ptr, sizeof(double)));
|
|
}
|
|
out = node->output(0);
|
|
} else {
|
|
std::vector<int64_t> shape;
|
|
GetAttr("shape", &shape);
|
|
out = helper_->Constant(shape, onnx_dtype, value);
|
|
}
|
|
if (value_is_tensor) {
|
|
auto value_info = GetInput("ValueTensor");
|
|
std::string cast_value = helper_->AutoCast(
|
|
value_info[0].name, value_info[0].dtype, out_info[0].dtype);
|
|
helper_->MakeNode("Add", {out, cast_value}, {out_info[0].name});
|
|
} else {
|
|
helper_->MakeNode("Identity", {out}, {out_info[0].name});
|
|
}
|
|
}
|
|
|
|
} // namespace paddle2onnx
|