mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
90 lines
3.0 KiB
C++
90 lines
3.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/tensor/clip.h"
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(clip, ClipMapper)
|
|
|
|
int32_t ClipMapper::GetMinOpset(bool verbose) {
|
|
bool has_max_tensor_input = HasInput("Max");
|
|
bool has_min_tensor_input = HasInput("Min");
|
|
if (has_max_tensor_input || has_min_tensor_input) {
|
|
return 11;
|
|
}
|
|
return 7;
|
|
}
|
|
|
|
void ClipMapper::Opset7() {
|
|
auto input_info = GetInput("X");
|
|
auto output_info = GetOutput("Out");
|
|
|
|
bool has_max_tensor_input = HasInput("Max");
|
|
bool has_min_tensor_input = HasInput("Min");
|
|
|
|
if (has_max_tensor_input || has_min_tensor_input) {
|
|
bool dtype_converted = false;
|
|
std::string input_name = input_info[0].name;
|
|
int32_t dtype = input_info[0].dtype;
|
|
// onnxruntime only supports float input
|
|
if (input_info[0].dtype != P2ODataType::FP32) {
|
|
input_name = helper_->AutoCast(input_info[0].name, input_info[0].dtype,
|
|
P2ODataType::FP32);
|
|
dtype_converted = true;
|
|
dtype = P2ODataType::FP32;
|
|
}
|
|
std::string max_name;
|
|
if (has_max_tensor_input) {
|
|
auto max_info = GetInput("Max");
|
|
max_name = helper_->AutoCast(max_info[0].name, max_info[0].dtype, dtype);
|
|
if (max_info[0].Rank() > 0) {
|
|
max_name = helper_->Squeeze(max_name, {});
|
|
}
|
|
} else {
|
|
float max_val;
|
|
GetAttr("max", &max_val);
|
|
max_name = helper_->Constant({}, GetOnnxDtype(dtype), max_val);
|
|
}
|
|
std::string min_name;
|
|
if (has_min_tensor_input) {
|
|
auto min_info = GetInput("Min");
|
|
min_name = helper_->AutoCast(min_info[0].name, min_info[0].dtype, dtype);
|
|
if (min_info[0].Rank() > 0) {
|
|
min_name = helper_->Squeeze(min_name, {});
|
|
}
|
|
} else {
|
|
float min_val;
|
|
GetAttr("min", &min_val);
|
|
min_name = helper_->Constant({}, GetOnnxDtype(dtype), min_val);
|
|
}
|
|
if (dtype_converted) {
|
|
auto node = helper_->MakeNode("Clip", {input_name, min_name, max_name});
|
|
helper_->AutoCast(node->output(0), output_info[0].name, P2ODataType::FP32,
|
|
output_info[0].dtype);
|
|
} else {
|
|
helper_->MakeNode("Clip", {input_name, min_name, max_name},
|
|
{output_info[0].name});
|
|
}
|
|
} else {
|
|
float max_val;
|
|
GetAttr("max", &max_val);
|
|
float min_val;
|
|
GetAttr("min", &min_val);
|
|
helper_->Clip(input_info[0].name, output_info[0].name, min_val, max_val,
|
|
input_info[0].dtype);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle2onnx
|