mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
147 lines
5.7 KiB
C++
147 lines
5.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/nn/layer_norm.h"
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(layer_norm, LayerNormMapper)
|
|
|
|
void LayerNormMapper::Opset7() {
|
|
auto input_info = GetInput("X");
|
|
auto output_info = GetOutput("Y");
|
|
|
|
std::string input_name = helper_->AutoCast(
|
|
input_info[0].name, input_info[0].dtype, P2ODataType::FP32);
|
|
|
|
std::vector<int64_t> input_shape = input_info[0].shape;
|
|
std::vector<int64_t> axes;
|
|
for (auto i = begin_norm_axis_; i < input_shape.size(); i++) {
|
|
axes.push_back(i);
|
|
}
|
|
if (begin_norm_axis_ == input_shape.size() - 1) {
|
|
axes[0] = -1;
|
|
}
|
|
|
|
float epsilon = epsilon_;
|
|
std::string epsilon_node =
|
|
helper_->Constant({}, GetOnnxDtype(P2ODataType::FP32), epsilon);
|
|
std::string two_node =
|
|
helper_->Constant({}, GetOnnxDtype(P2ODataType::FP32), float(2.0));
|
|
|
|
auto mean_node = helper_->MakeNode("ReduceMean", {input_name});
|
|
AddAttribute(mean_node, "axes", axes);
|
|
|
|
auto numerator_node =
|
|
helper_->MakeNode("Sub", {input_name, mean_node->output(0)});
|
|
auto pow_num_node =
|
|
helper_->MakeNode("Pow", {numerator_node->output(0), two_node});
|
|
|
|
auto variance_node =
|
|
helper_->MakeNode("ReduceMean", {pow_num_node->output(0)});
|
|
AddAttribute(variance_node, "axes", axes);
|
|
|
|
auto add_eps_node =
|
|
helper_->MakeNode("Add", {variance_node->output(0), epsilon_node});
|
|
|
|
auto denominator_node = helper_->MakeNode("Sqrt", {add_eps_node->output(0)});
|
|
|
|
auto ipt_shape_node = helper_->MakeNode("Shape", {input_name});
|
|
std::vector<int64_t> slice_axes = {0};
|
|
std::vector<int64_t> start = {
|
|
static_cast<int64_t>(input_shape.size() - axes.size())};
|
|
std::vector<int64_t> end = {static_cast<int64_t>(input_shape.size())};
|
|
std::string weight_shape_node =
|
|
helper_->Slice(ipt_shape_node->output(0), slice_axes, start, end);
|
|
|
|
bool has_input_Bias = HasInput("Bias");
|
|
bool has_input_Scale = HasInput("Scale");
|
|
|
|
if (has_input_Bias && has_input_Scale) {
|
|
auto scale_info = GetInput("Scale");
|
|
auto bias_info = GetInput("Bias");
|
|
std::string scale_name = helper_->AutoCast(
|
|
scale_info[0].name, scale_info[0].dtype, P2ODataType::FP32);
|
|
std::string bias_name = helper_->AutoCast(
|
|
bias_info[0].name, bias_info[0].dtype, P2ODataType::FP32);
|
|
std::string scale_node = "";
|
|
std::string bias_node = "";
|
|
if (begin_norm_axis_ == input_shape.size() - 1) {
|
|
scale_node = helper_->Reshape(scale_name, {-1});
|
|
bias_node = helper_->Reshape(bias_name, {-1});
|
|
} else {
|
|
scale_node = helper_->MakeNode("Reshape", {scale_name, weight_shape_node})
|
|
->output(0);
|
|
bias_node = helper_->MakeNode("Reshape", {bias_name, weight_shape_node})
|
|
->output(0);
|
|
}
|
|
auto layer_norm_pre_node = helper_->MakeNode(
|
|
"Div", {numerator_node->output(0), denominator_node->output(0)});
|
|
auto layer_norm_node =
|
|
helper_->MakeNode("Mul", {layer_norm_pre_node->output(0), scale_node});
|
|
auto pre_cast_node =
|
|
helper_->MakeNode("Add", {layer_norm_node->output(0), bias_node});
|
|
helper_->AutoCast(pre_cast_node->output(0), output_info[0].name,
|
|
P2ODataType::FP32, output_info[0].dtype);
|
|
return;
|
|
}
|
|
if (has_input_Bias) {
|
|
auto bias_info = GetInput("Bias");
|
|
std::string bias_name = helper_->AutoCast(
|
|
bias_info[0].name, bias_info[0].dtype, P2ODataType::FP32);
|
|
std::string bias_node = "";
|
|
if (begin_norm_axis_ == input_shape.size() - 1) {
|
|
bias_node = helper_->Reshape(bias_name, {-1});
|
|
} else {
|
|
bias_node = helper_->MakeNode("Reshape", {bias_name, weight_shape_node})
|
|
->output(0);
|
|
}
|
|
auto layer_norm_node = helper_->MakeNode(
|
|
"Div", {numerator_node->output(0), denominator_node->output(0)});
|
|
auto pre_cast_node =
|
|
helper_->MakeNode("Add", {layer_norm_node->output(0), bias_node});
|
|
helper_->AutoCast(pre_cast_node->output(0), output_info[0].name,
|
|
P2ODataType::FP32, output_info[0].dtype);
|
|
return;
|
|
}
|
|
if (has_input_Scale) {
|
|
auto scale_info = GetInput("Scale");
|
|
std::string scale_name = helper_->AutoCast(
|
|
scale_info[0].name, scale_info[0].dtype, P2ODataType::FP32);
|
|
std::string scale_node = "";
|
|
if (begin_norm_axis_ == input_shape.size() - 1) {
|
|
scale_node = helper_->Reshape(scale_name, {-1});
|
|
} else {
|
|
scale_node = helper_->MakeNode("Reshape", {scale_name, weight_shape_node})
|
|
->output(0);
|
|
}
|
|
auto layer_norm_node = helper_->MakeNode(
|
|
"Div", {numerator_node->output(0), denominator_node->output(0)});
|
|
auto pre_cast_node =
|
|
helper_->MakeNode("Mul", {layer_norm_node->output(0), scale_node});
|
|
helper_->AutoCast(pre_cast_node->output(0), output_info[0].name,
|
|
P2ODataType::FP32, output_info[0].dtype);
|
|
return;
|
|
}
|
|
auto pre_cast_node = helper_->MakeNode(
|
|
"Div", {numerator_node->output(0), denominator_node->output(0)});
|
|
helper_->AutoCast(pre_cast_node->output(0), output_info[0].name,
|
|
P2ODataType::FP32, output_info[0].dtype);
|
|
}
|
|
|
|
} // namespace paddle2onnx
|