Files
FastDeploy/paddle2onnx/mapper/nn/interpolate.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

137 lines
5.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/nn/interpolate.h"
namespace paddle2onnx {
REGISTER_MAPPER(bilinear_interp, InterpolateMapper)
REGISTER_MAPPER(bilinear_interp_v2, InterpolateMapper)
REGISTER_MAPPER(nearest_interp_v2, InterpolateMapper)
REGISTER_MAPPER(bicubic_interp_v2, InterpolateMapper)
REGISTER_MAPPER(linear_interp_v2, InterpolateMapper)
REGISTER_MAPPER(trilinear_interp_v2, InterpolateMapper)
int32_t InterpolateMapper::GetMinOpset(bool verbose) {
if (data_layout_ == "NHWC") {
Error() << "Data format of NHWC is not supported." << std::endl;
return -1;
}
auto x_info = GetInput("X");
if (x_info[0].Rank() > 5 && x_info[0].Rank() < 3) {
Error() << "Only support 3D/4D/5D tensor, but now its dimension is "
<< x_info[0].Rank() << std::endl;
return -1;
}
Logger(verbose, 11) << RequireOpset(11) << std::endl;
return 11;
}
std::string InterpolateMapper::ComputeOutSize() {
bool has_out_size = HasInput("OutSize");
bool has_size_tensor = HasInput("SizeTensor");
if (has_out_size) {
auto out_size_info = GetInput("OutSize");
return helper_->AutoCast(out_size_info[0].name, out_size_info[0].dtype,
P2ODataType::INT64);
} else {
auto size_tensor_info = GetInput("SizeTensor");
return helper_->ConcatIndices(size_tensor_info);
}
}
std::string InterpolateMapper::ComputeScale() {
auto scale_info = GetInput("Scale");
auto scale = helper_->AutoCast(scale_info[0].name, scale_info[0].dtype,
P2ODataType::FP32);
auto padding = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT,
std::vector<float>(2, 1.0));
scale = helper_->Concat({padding, scale}, 0);
return scale;
}
void InterpolateMapper::Opset11() {
auto x_info = GetInput("X");
auto out_info = GetOutput("Out");
std::string coordinate_transformation_mode = "half_pixel";
auto resize_type = resize_mapper_[method_];
if (align_corners_) {
coordinate_transformation_mode = "align_corners";
} else if (resize_type == "nearest") {
coordinate_transformation_mode = "asymmetric";
} else if (align_mode_ == 1 && resize_type != "cubic") {
coordinate_transformation_mode = "asymmetric";
}
std::string scale = "";
std::string size = "";
bool has_out_size = HasInput("OutSize");
bool has_size_tensor = HasInput("SizeTensor");
bool has_scale_tensor = HasInput("Scale");
if (has_out_size || has_size_tensor) {
size = ComputeOutSize();
} else if (has_scale_tensor) {
scale = ComputeScale();
} else {
// get size or scale from attribute
if (out_d_ > 0 || out_w_ > 0 || out_h_ > 0) {
std::vector<int64_t> out_size;
if (x_info[0].Rank() == 5) {
out_size.push_back(out_d_);
out_size.push_back(out_h_);
}
if (x_info[0].Rank() == 4) {
out_size.push_back(out_h_);
}
out_size.push_back(out_w_);
size = helper_->Constant(ONNX_NAMESPACE::TensorProto::INT64, out_size);
} else {
std::vector<float> scale_;
GetAttr("scale", &scale_);
float padding = 1.0;
scale_.insert(scale_.begin(), padding);
scale_.insert(scale_.begin(), padding);
scale = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, scale_);
}
}
std::string roi = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, std::vector<float>());
if (scale == "") {
// has to generate a empty tensor for resize
scale = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT,
std::vector<float>());
}
if (size != "") {
auto ipt_shape = helper_->MakeNode("Shape", {x_info[0].name})->output(0);
auto nc = helper_->Slice(ipt_shape, {0}, {0}, {2});
size = helper_->Concat({nc, size}, 0);
}
std::shared_ptr<ONNX_NAMESPACE::NodeProto> node;
if (size != "") {
node = helper_->MakeNode("Resize", {x_info[0].name, roi, scale, size},
{out_info[0].name});
} else {
node = helper_->MakeNode("Resize", {x_info[0].name, roi, scale},
{out_info[0].name});
}
Assert(resize_mapper_.find(OpType()) != resize_mapper_.end(),
"Cannot find " + OpType() + " in resize_mapper.");
AddAttribute(node, "mode", resize_mapper_[OpType()]);
AddAttribute(node, "coordinate_transformation_mode",
coordinate_transformation_mode);
if (resize_mapper_[OpType()] == "nearest" &&
coordinate_transformation_mode == "asymmetric") {
AddAttribute(node, "nearest_mode", "floor");
}
}
} // namespace paddle2onnx