mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
137 lines
5.1 KiB
C++
Executable File
137 lines
5.1 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/nn/interpolate.h"
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(bilinear_interp, InterpolateMapper)
|
|
REGISTER_MAPPER(bilinear_interp_v2, InterpolateMapper)
|
|
REGISTER_MAPPER(nearest_interp_v2, InterpolateMapper)
|
|
REGISTER_MAPPER(bicubic_interp_v2, InterpolateMapper)
|
|
REGISTER_MAPPER(linear_interp_v2, InterpolateMapper)
|
|
REGISTER_MAPPER(trilinear_interp_v2, InterpolateMapper)
|
|
|
|
int32_t InterpolateMapper::GetMinOpset(bool verbose) {
|
|
if (data_layout_ == "NHWC") {
|
|
Error() << "Data format of NHWC is not supported." << std::endl;
|
|
return -1;
|
|
}
|
|
auto x_info = GetInput("X");
|
|
if (x_info[0].Rank() > 5 && x_info[0].Rank() < 3) {
|
|
Error() << "Only support 3D/4D/5D tensor, but now its dimension is "
|
|
<< x_info[0].Rank() << std::endl;
|
|
return -1;
|
|
}
|
|
Logger(verbose, 11) << RequireOpset(11) << std::endl;
|
|
return 11;
|
|
}
|
|
|
|
std::string InterpolateMapper::ComputeOutSize() {
|
|
bool has_out_size = HasInput("OutSize");
|
|
bool has_size_tensor = HasInput("SizeTensor");
|
|
if (has_out_size) {
|
|
auto out_size_info = GetInput("OutSize");
|
|
return helper_->AutoCast(out_size_info[0].name, out_size_info[0].dtype,
|
|
P2ODataType::INT64);
|
|
} else {
|
|
auto size_tensor_info = GetInput("SizeTensor");
|
|
return helper_->ConcatIndices(size_tensor_info);
|
|
}
|
|
}
|
|
|
|
std::string InterpolateMapper::ComputeScale() {
|
|
auto scale_info = GetInput("Scale");
|
|
auto scale = helper_->AutoCast(scale_info[0].name, scale_info[0].dtype,
|
|
P2ODataType::FP32);
|
|
auto padding = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT,
|
|
std::vector<float>(2, 1.0));
|
|
scale = helper_->Concat({padding, scale}, 0);
|
|
return scale;
|
|
}
|
|
|
|
void InterpolateMapper::Opset11() {
|
|
auto x_info = GetInput("X");
|
|
auto out_info = GetOutput("Out");
|
|
std::string coordinate_transformation_mode = "half_pixel";
|
|
auto resize_type = resize_mapper_[method_];
|
|
if (align_corners_) {
|
|
coordinate_transformation_mode = "align_corners";
|
|
} else if (resize_type == "nearest") {
|
|
coordinate_transformation_mode = "asymmetric";
|
|
} else if (align_mode_ == 1 && resize_type != "cubic") {
|
|
coordinate_transformation_mode = "asymmetric";
|
|
}
|
|
std::string scale = "";
|
|
std::string size = "";
|
|
bool has_out_size = HasInput("OutSize");
|
|
bool has_size_tensor = HasInput("SizeTensor");
|
|
bool has_scale_tensor = HasInput("Scale");
|
|
if (has_out_size || has_size_tensor) {
|
|
size = ComputeOutSize();
|
|
} else if (has_scale_tensor) {
|
|
scale = ComputeScale();
|
|
} else {
|
|
// get size or scale from attribute
|
|
if (out_d_ > 0 || out_w_ > 0 || out_h_ > 0) {
|
|
std::vector<int64_t> out_size;
|
|
if (x_info[0].Rank() == 5) {
|
|
out_size.push_back(out_d_);
|
|
out_size.push_back(out_h_);
|
|
}
|
|
if (x_info[0].Rank() == 4) {
|
|
out_size.push_back(out_h_);
|
|
}
|
|
out_size.push_back(out_w_);
|
|
size = helper_->Constant(ONNX_NAMESPACE::TensorProto::INT64, out_size);
|
|
} else {
|
|
std::vector<float> scale_;
|
|
GetAttr("scale", &scale_);
|
|
float padding = 1.0;
|
|
scale_.insert(scale_.begin(), padding);
|
|
scale_.insert(scale_.begin(), padding);
|
|
scale = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, scale_);
|
|
}
|
|
}
|
|
std::string roi = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, std::vector<float>());
|
|
if (scale == "") {
|
|
// has to generate a empty tensor for resize
|
|
scale = helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT,
|
|
std::vector<float>());
|
|
}
|
|
if (size != "") {
|
|
auto ipt_shape = helper_->MakeNode("Shape", {x_info[0].name})->output(0);
|
|
auto nc = helper_->Slice(ipt_shape, {0}, {0}, {2});
|
|
size = helper_->Concat({nc, size}, 0);
|
|
}
|
|
std::shared_ptr<ONNX_NAMESPACE::NodeProto> node;
|
|
if (size != "") {
|
|
node = helper_->MakeNode("Resize", {x_info[0].name, roi, scale, size},
|
|
{out_info[0].name});
|
|
} else {
|
|
node = helper_->MakeNode("Resize", {x_info[0].name, roi, scale},
|
|
{out_info[0].name});
|
|
}
|
|
Assert(resize_mapper_.find(OpType()) != resize_mapper_.end(),
|
|
"Cannot find " + OpType() + " in resize_mapper.");
|
|
AddAttribute(node, "mode", resize_mapper_[OpType()]);
|
|
AddAttribute(node, "coordinate_transformation_mode",
|
|
coordinate_transformation_mode);
|
|
if (resize_mapper_[OpType()] == "nearest" &&
|
|
coordinate_transformation_mode == "asymmetric") {
|
|
AddAttribute(node, "nearest_mode", "floor");
|
|
}
|
|
}
|
|
|
|
} // namespace paddle2onnx
|