Files
FastDeploy/paddle2onnx/mapper/nn/instance_norm.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

60 lines
1.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/nn/instance_norm.h"
#include <string>
#include <vector>
namespace paddle2onnx {
REGISTER_MAPPER(instance_norm, InstanceNormMapper)
int32_t InstanceNormMapper::GetMinOpset(bool verbose) {
auto input_info = GetInput("X");
int num_groups = input_info[0].shape[1];
if (num_groups < 0) {
Error() << "The dimension in axis=1 of input tensor must be known, but now it's unknown." << std::endl;
return -1;
}
return 7;
}
void InstanceNormMapper::Opset7() {
auto input_info = GetInput("X");
auto output_info = GetOutput("Y");
int num_groups = input_info[0].shape[1];
std::string scale = "";
if (HasInput("Scale")) {
scale = GetInput("Scale")[0].name;
} else {
scale = helper_->Constant(GetOnnxDtype(input_info[0].dtype), std::vector<float>(num_groups, 1.0));
}
std::string bias = "";
if (HasInput("Bias")) {
bias = GetInput("Bias")[0].name;
} else {
bias = helper_->Constant(GetOnnxDtype(input_info[0].dtype), std::vector<float>(num_groups, 0.0));
}
auto node = helper_->MakeNode(
"InstanceNormalization",
{input_info[0].name, scale, bias},
{output_info[0].name});
AddAttribute(node, "epsilon", epsilon_);
}
} // namespace paddle2onnx