mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
60 lines
1.8 KiB
C++
60 lines
1.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/nn/instance_norm.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(instance_norm, InstanceNormMapper)
|
|
|
|
int32_t InstanceNormMapper::GetMinOpset(bool verbose) {
|
|
auto input_info = GetInput("X");
|
|
int num_groups = input_info[0].shape[1];
|
|
if (num_groups < 0) {
|
|
Error() << "The dimension in axis=1 of input tensor must be known, but now it's unknown." << std::endl;
|
|
return -1;
|
|
}
|
|
return 7;
|
|
}
|
|
|
|
void InstanceNormMapper::Opset7() {
|
|
auto input_info = GetInput("X");
|
|
auto output_info = GetOutput("Y");
|
|
int num_groups = input_info[0].shape[1];
|
|
|
|
std::string scale = "";
|
|
if (HasInput("Scale")) {
|
|
scale = GetInput("Scale")[0].name;
|
|
} else {
|
|
scale = helper_->Constant(GetOnnxDtype(input_info[0].dtype), std::vector<float>(num_groups, 1.0));
|
|
}
|
|
|
|
std::string bias = "";
|
|
if (HasInput("Bias")) {
|
|
bias = GetInput("Bias")[0].name;
|
|
} else {
|
|
bias = helper_->Constant(GetOnnxDtype(input_info[0].dtype), std::vector<float>(num_groups, 0.0));
|
|
}
|
|
|
|
auto node = helper_->MakeNode(
|
|
"InstanceNormalization",
|
|
{input_info[0].name, scale, bias},
|
|
{output_info[0].name});
|
|
AddAttribute(node, "epsilon", epsilon_);
|
|
}
|
|
|
|
} // namespace paddle2onnx
|