Files
FastDeploy/paddle2onnx/mapper/nn/group_norm.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

76 lines
2.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/nn/group_norm.h"
#include <cmath>
#include <string>
#include <vector>
namespace paddle2onnx {
REGISTER_MAPPER(group_norm, GroupNormMapper)
int32_t GroupNormMapper::GetMinOpset(bool verbose) {
auto input_info = GetInput("X");
if (input_info[0].Rank() != 4) {
Error() << "Only support 4D-Tensor as input for GroupNorm" << std::endl;
return -1;
}
return 7;
}
void GroupNormMapper::Opset7() {
auto input_info = GetInput("X");
auto output_info = GetOutput("Y");
std::vector<int64_t> shape_val = {0, groups_, -1};
std::string shape =
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), shape_val);
auto reshape_input =
helper_->MakeNode("Reshape", {input_info[0].name, shape});
std::string scale_ = helper_->Constant(GetOnnxDtype(input_info[0].dtype),
std::vector<float>(groups_, 1.0));
std::string bias_ = helper_->Constant(GetOnnxDtype(input_info[0].dtype),
std::vector<float>(groups_, 0.0));
auto reshaped_output = helper_->MakeNode(
"InstanceNormalization", {reshape_input->output(0), scale_, bias_});
AddAttribute(reshaped_output, "epsilon", epsilon_);
auto origin_shape = helper_->MakeNode("Shape", {input_info[0].name});
if (HasInput("Scale") && HasInput("Bias")) {
auto scale_info = GetInput("Scale");
auto bias_info = GetInput("Bias");
auto output = helper_->MakeNode(
"Reshape", {reshaped_output->output(0), origin_shape->output(0)});
std::string unsqueezed_scale =
helper_->Unsqueeze(scale_info[0].name, {1, 2});
std::string unsqueezed_bias = helper_->Unsqueeze(bias_info[0].name, {1, 2});
auto scale_output =
helper_->MakeNode("Mul", {output->output(0), unsqueezed_scale});
helper_->MakeNode("Add", {scale_output->output(0), unsqueezed_bias},
{output_info[0].name});
} else {
helper_->MakeNode("Reshape",
{reshaped_output->output(0), origin_shape->output(0)},
{output_info[0].name});
}
}
} // namespace paddle2onnx