mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
189 lines
7.1 KiB
C++
189 lines
7.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle2onnx/mapper/elementwise.h"
|
|
|
|
namespace paddle2onnx {
|
|
|
|
REGISTER_MAPPER(elementwise_add, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_sub, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_div, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_mul, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_min, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_max, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_pow, ElementwiseMapper)
|
|
REGISTER_MAPPER(elementwise_mod, ElementWiseModMapper)
|
|
REGISTER_MAPPER(elementwise_floordiv, ElementWiseFloordivMapper)
|
|
|
|
int32_t ElementwiseMapper::GetMinOpset(bool verbose) {
|
|
if (OpType() == "elementwise_min" || OpType() == "elementwise_max") {
|
|
Logger(verbose, 8) << RequireOpset(8) << std::endl;
|
|
return 8;
|
|
}
|
|
return 7;
|
|
}
|
|
|
|
void ElementwiseMapper::Opset7() {
|
|
auto input_x_info = GetInput("X");
|
|
auto input_y_info = GetInput("Y");
|
|
auto output_info = GetOutput("Out");
|
|
auto iter = op_mapper_.find(OpType());
|
|
Assert(op_mapper_.end() != iter,
|
|
"Cannot find " + OpType() + " in elementwise op_mapper.");
|
|
|
|
auto x_name = input_x_info[0].name;
|
|
auto y_name = input_y_info[0].name;
|
|
if (input_x_info[0].dtype == P2ODataType::BOOL &&
|
|
input_y_info[0].dtype == P2ODataType::BOOL) {
|
|
x_name =
|
|
helper_->AutoCast(x_name, input_x_info[0].dtype, P2ODataType::INT32);
|
|
y_name =
|
|
helper_->AutoCast(y_name, input_y_info[0].dtype, P2ODataType::INT32);
|
|
}
|
|
|
|
std::string output_name;
|
|
if (axis_ == -1 || axis_ == (input_x_info[0].Rank() - 1) ||
|
|
input_x_info[0].Rank() == input_y_info[0].Rank()) {
|
|
output_name = helper_->MakeNode(iter->second, {x_name, y_name})->output(0);
|
|
} else {
|
|
std::vector<int64_t> broadcast_shape(input_x_info[0].Rank(), 1);
|
|
for (int i = axis_; i < axis_ + input_y_info[0].Rank(); ++i) {
|
|
broadcast_shape[i] = input_y_info[0].shape[i - axis_];
|
|
}
|
|
std::string broadcast_shape_node =
|
|
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), broadcast_shape);
|
|
auto y_node = helper_->MakeNode("Reshape", {y_name, broadcast_shape_node});
|
|
output_name =
|
|
helper_->MakeNode(iter->second, {x_name, y_node->output(0)})->output(0);
|
|
}
|
|
|
|
if (input_x_info[0].dtype == P2ODataType::BOOL &&
|
|
input_y_info[0].dtype == P2ODataType::BOOL) {
|
|
helper_->AutoCast(output_name, output_info[0].name, P2ODataType::INT32,
|
|
P2ODataType::BOOL);
|
|
} else {
|
|
helper_->MakeNode("Identity", {output_name}, {output_info[0].name});
|
|
}
|
|
}
|
|
|
|
void ElementWiseModMapper::Opset10() {
|
|
auto input_x_info = GetInput("X");
|
|
auto input_y_info = GetInput("Y");
|
|
auto output_info = GetOutput("Out");
|
|
int64_t fmod = 0;
|
|
if (input_y_info[0].dtype == P2ODataType::INT32 ||
|
|
input_y_info[0].dtype == P2ODataType::INT64) {
|
|
if (this->deploy_backend == "tensorrt") {
|
|
auto x = helper_->AutoCast(input_x_info[0].name, input_x_info[0].dtype,
|
|
input_y_info[0].dtype);
|
|
auto times =
|
|
helper_->MakeNode("Div", {input_x_info[0].name, input_y_info[0].name})
|
|
->output(0);
|
|
auto result =
|
|
helper_->MakeNode("Mul", {input_y_info[0].name, times})->output(0);
|
|
helper_->MakeNode("Sub", {input_x_info[0].name, result},
|
|
{output_info[0].name});
|
|
return;
|
|
}
|
|
auto mod_node =
|
|
helper_->MakeNode("Mod", {input_x_info[0].name, input_y_info[0].name},
|
|
{output_info[0].name});
|
|
AddAttribute(mod_node, "fmod", fmod);
|
|
return;
|
|
}
|
|
|
|
fmod = 1;
|
|
|
|
auto abs_x_node = helper_->MakeNode("Abs", {input_x_info[0].name});
|
|
auto abs_y_node = helper_->MakeNode("Abs", {input_y_info[0].name});
|
|
|
|
auto dtype = input_y_info[0].dtype;
|
|
std::vector<float> val_0 = {0.0};
|
|
|
|
std::string zero_node = helper_->Constant(GetOnnxDtype(dtype), val_0);
|
|
|
|
auto mod_node =
|
|
helper_->MakeNode("Mod", {abs_x_node->output(0), abs_y_node->output(0)});
|
|
AddAttribute(mod_node, "fmod", fmod);
|
|
|
|
auto neg_node = helper_->MakeNode("Neg", {mod_node->output(0)});
|
|
|
|
auto less_node = helper_->MakeNode("Less", {input_x_info[0].name, zero_node});
|
|
|
|
std::string condition_node =
|
|
helper_->AutoCast(less_node->output(0), dtype, P2ODataType::BOOL);
|
|
|
|
auto mod_res_node = helper_->MakeNode(
|
|
"Where", {condition_node, neg_node->output(0), mod_node->output(0)});
|
|
|
|
auto mod_y_add_node =
|
|
helper_->MakeNode("Add", {mod_res_node->output(0), input_y_info[0].name});
|
|
|
|
auto mod_y_mul_node =
|
|
helper_->MakeNode("Mul", {mod_res_node->output(0), input_y_info[0].name});
|
|
|
|
auto mod_y_mul_less_node =
|
|
helper_->MakeNode("Less", {mod_y_mul_node->output(0), zero_node});
|
|
|
|
std::string mod_y_mul_condition_node = helper_->AutoCast(
|
|
mod_y_mul_less_node->output(0), dtype, P2ODataType::BOOL);
|
|
|
|
helper_->MakeNode("Where",
|
|
{mod_y_mul_condition_node, mod_y_add_node->output(0),
|
|
mod_res_node->output(0)},
|
|
{output_info[0].name});
|
|
}
|
|
|
|
void ElementWiseFloordivMapper::Opset7() {
|
|
auto input_x_info = GetInput("X");
|
|
auto input_y_info = GetInput("Y");
|
|
auto output_info = GetOutput("Out");
|
|
|
|
bool is_int = false;
|
|
if (input_x_info[0].dtype <= 3 || input_x_info[0].dtype == 20 ||
|
|
input_y_info[0].dtype <= 3 || input_y_info[0].dtype == 20) {
|
|
is_int = true;
|
|
}
|
|
if (axis_ == -1 || axis_ == input_x_info[0].Rank() - 1 ||
|
|
input_x_info[0].Rank() == input_y_info[0].Rank()) {
|
|
if (is_int) {
|
|
helper_->MakeNode("Div", {input_x_info[0].name, input_y_info[0].name},
|
|
{output_info[0].name});
|
|
} else {
|
|
auto div_node = helper_->MakeNode(
|
|
"Div", {input_x_info[0].name, input_y_info[0].name});
|
|
helper_->MakeNode("Floor", {div_node->output(0)}, {output_info[0].name});
|
|
}
|
|
} else {
|
|
std::vector<int64_t> broadcast_shape;
|
|
broadcast_shape.resize(axis_ + input_x_info[0].Rank(), 1);
|
|
for (auto i = 0; i < input_y_info[0].Rank(); ++i) {
|
|
broadcast_shape[axis_ + i] = input_y_info[0].shape[i];
|
|
}
|
|
std::string broadcast_shape_node =
|
|
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), broadcast_shape);
|
|
auto y_node = helper_->MakeNode(
|
|
"Reshape", {input_y_info[0].name, broadcast_shape_node});
|
|
if (is_int) {
|
|
helper_->MakeNode("Div", {input_x_info[0].name, y_node->output(0)},
|
|
{output_info[0].name});
|
|
} else {
|
|
auto div_node =
|
|
helper_->MakeNode("Div", {input_x_info[0].name, y_node->output(0)});
|
|
helper_->MakeNode("Floor", {div_node->output(0)}, {output_info[0].name});
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle2onnx
|