Files
FastDeploy/paddle2onnx/mapper/elementwise.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

189 lines
7.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/elementwise.h"
namespace paddle2onnx {
REGISTER_MAPPER(elementwise_add, ElementwiseMapper)
REGISTER_MAPPER(elementwise_sub, ElementwiseMapper)
REGISTER_MAPPER(elementwise_div, ElementwiseMapper)
REGISTER_MAPPER(elementwise_mul, ElementwiseMapper)
REGISTER_MAPPER(elementwise_min, ElementwiseMapper)
REGISTER_MAPPER(elementwise_max, ElementwiseMapper)
REGISTER_MAPPER(elementwise_pow, ElementwiseMapper)
REGISTER_MAPPER(elementwise_mod, ElementWiseModMapper)
REGISTER_MAPPER(elementwise_floordiv, ElementWiseFloordivMapper)
int32_t ElementwiseMapper::GetMinOpset(bool verbose) {
if (OpType() == "elementwise_min" || OpType() == "elementwise_max") {
Logger(verbose, 8) << RequireOpset(8) << std::endl;
return 8;
}
return 7;
}
void ElementwiseMapper::Opset7() {
auto input_x_info = GetInput("X");
auto input_y_info = GetInput("Y");
auto output_info = GetOutput("Out");
auto iter = op_mapper_.find(OpType());
Assert(op_mapper_.end() != iter,
"Cannot find " + OpType() + " in elementwise op_mapper.");
auto x_name = input_x_info[0].name;
auto y_name = input_y_info[0].name;
if (input_x_info[0].dtype == P2ODataType::BOOL &&
input_y_info[0].dtype == P2ODataType::BOOL) {
x_name =
helper_->AutoCast(x_name, input_x_info[0].dtype, P2ODataType::INT32);
y_name =
helper_->AutoCast(y_name, input_y_info[0].dtype, P2ODataType::INT32);
}
std::string output_name;
if (axis_ == -1 || axis_ == (input_x_info[0].Rank() - 1) ||
input_x_info[0].Rank() == input_y_info[0].Rank()) {
output_name = helper_->MakeNode(iter->second, {x_name, y_name})->output(0);
} else {
std::vector<int64_t> broadcast_shape(input_x_info[0].Rank(), 1);
for (int i = axis_; i < axis_ + input_y_info[0].Rank(); ++i) {
broadcast_shape[i] = input_y_info[0].shape[i - axis_];
}
std::string broadcast_shape_node =
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), broadcast_shape);
auto y_node = helper_->MakeNode("Reshape", {y_name, broadcast_shape_node});
output_name =
helper_->MakeNode(iter->second, {x_name, y_node->output(0)})->output(0);
}
if (input_x_info[0].dtype == P2ODataType::BOOL &&
input_y_info[0].dtype == P2ODataType::BOOL) {
helper_->AutoCast(output_name, output_info[0].name, P2ODataType::INT32,
P2ODataType::BOOL);
} else {
helper_->MakeNode("Identity", {output_name}, {output_info[0].name});
}
}
void ElementWiseModMapper::Opset10() {
auto input_x_info = GetInput("X");
auto input_y_info = GetInput("Y");
auto output_info = GetOutput("Out");
int64_t fmod = 0;
if (input_y_info[0].dtype == P2ODataType::INT32 ||
input_y_info[0].dtype == P2ODataType::INT64) {
if (this->deploy_backend == "tensorrt") {
auto x = helper_->AutoCast(input_x_info[0].name, input_x_info[0].dtype,
input_y_info[0].dtype);
auto times =
helper_->MakeNode("Div", {input_x_info[0].name, input_y_info[0].name})
->output(0);
auto result =
helper_->MakeNode("Mul", {input_y_info[0].name, times})->output(0);
helper_->MakeNode("Sub", {input_x_info[0].name, result},
{output_info[0].name});
return;
}
auto mod_node =
helper_->MakeNode("Mod", {input_x_info[0].name, input_y_info[0].name},
{output_info[0].name});
AddAttribute(mod_node, "fmod", fmod);
return;
}
fmod = 1;
auto abs_x_node = helper_->MakeNode("Abs", {input_x_info[0].name});
auto abs_y_node = helper_->MakeNode("Abs", {input_y_info[0].name});
auto dtype = input_y_info[0].dtype;
std::vector<float> val_0 = {0.0};
std::string zero_node = helper_->Constant(GetOnnxDtype(dtype), val_0);
auto mod_node =
helper_->MakeNode("Mod", {abs_x_node->output(0), abs_y_node->output(0)});
AddAttribute(mod_node, "fmod", fmod);
auto neg_node = helper_->MakeNode("Neg", {mod_node->output(0)});
auto less_node = helper_->MakeNode("Less", {input_x_info[0].name, zero_node});
std::string condition_node =
helper_->AutoCast(less_node->output(0), dtype, P2ODataType::BOOL);
auto mod_res_node = helper_->MakeNode(
"Where", {condition_node, neg_node->output(0), mod_node->output(0)});
auto mod_y_add_node =
helper_->MakeNode("Add", {mod_res_node->output(0), input_y_info[0].name});
auto mod_y_mul_node =
helper_->MakeNode("Mul", {mod_res_node->output(0), input_y_info[0].name});
auto mod_y_mul_less_node =
helper_->MakeNode("Less", {mod_y_mul_node->output(0), zero_node});
std::string mod_y_mul_condition_node = helper_->AutoCast(
mod_y_mul_less_node->output(0), dtype, P2ODataType::BOOL);
helper_->MakeNode("Where",
{mod_y_mul_condition_node, mod_y_add_node->output(0),
mod_res_node->output(0)},
{output_info[0].name});
}
void ElementWiseFloordivMapper::Opset7() {
auto input_x_info = GetInput("X");
auto input_y_info = GetInput("Y");
auto output_info = GetOutput("Out");
bool is_int = false;
if (input_x_info[0].dtype <= 3 || input_x_info[0].dtype == 20 ||
input_y_info[0].dtype <= 3 || input_y_info[0].dtype == 20) {
is_int = true;
}
if (axis_ == -1 || axis_ == input_x_info[0].Rank() - 1 ||
input_x_info[0].Rank() == input_y_info[0].Rank()) {
if (is_int) {
helper_->MakeNode("Div", {input_x_info[0].name, input_y_info[0].name},
{output_info[0].name});
} else {
auto div_node = helper_->MakeNode(
"Div", {input_x_info[0].name, input_y_info[0].name});
helper_->MakeNode("Floor", {div_node->output(0)}, {output_info[0].name});
}
} else {
std::vector<int64_t> broadcast_shape;
broadcast_shape.resize(axis_ + input_x_info[0].Rank(), 1);
for (auto i = 0; i < input_y_info[0].Rank(); ++i) {
broadcast_shape[axis_ + i] = input_y_info[0].shape[i];
}
std::string broadcast_shape_node =
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), broadcast_shape);
auto y_node = helper_->MakeNode(
"Reshape", {input_y_info[0].name, broadcast_shape_node});
if (is_int) {
helper_->MakeNode("Div", {input_x_info[0].name, y_node->output(0)},
{output_info[0].name});
} else {
auto div_node =
helper_->MakeNode("Div", {input_x_info[0].name, y_node->output(0)});
helper_->MakeNode("Floor", {div_node->output(0)}, {output_info[0].name});
}
}
}
} // namespace paddle2onnx