Files
FastDeploy/fastdeploy/vision/tracking/pptracking/model.cc
Zheng-Bicheng 0687d3b0ad [Model] Add Solov2 For PaddleDetection (#1435)
* update solov2

* Repair note

* update solov2 postprocess

* update

* update solov2

* update solov2

* fixed bug

* fixed bug

* update solov2

* update solov2

* fix build android bug

* update docs

* update docs

* update docs

* update

* update

* update arch and docs

* update

* update

* update solov2 python

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-03-08 10:01:32 +08:00

315 lines
11 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/tracking/pptracking/model.h"
#include "fastdeploy/vision/tracking/pptracking/letter_box_resize.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace tracking {
PPTracking::PPTracking(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
config_file_ = config_file;
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PPTracking::BuildPreprocessPipelineFromConfig() {
processors_.clear();
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file_);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file_
<< ", maybe you should check this file." << std::endl;
return false;
}
// Get draw_threshold for visualization
if (cfg["draw_threshold"].IsDefined()) {
draw_threshold_ = cfg["draw_threshold"].as<float>();
} else {
FDERROR << "Please set draw_threshold." << std::endl;
return false;
}
// Get config for tracker
if (cfg["tracker"].IsDefined()) {
if (cfg["tracker"]["conf_thres"].IsDefined()) {
conf_thresh_ = cfg["tracker"]["conf_thres"].as<float>();
} else {
std::cerr << "Please set conf_thres in tracker." << std::endl;
return false;
}
if (cfg["tracker"]["min_box_area"].IsDefined()) {
min_box_area_ = cfg["tracker"]["min_box_area"].as<float>();
}
if (cfg["tracker"]["tracked_thresh"].IsDefined()) {
tracked_thresh_ = cfg["tracker"]["tracked_thresh"].as<float>();
}
}
processors_.push_back(std::make_shared<BGR2RGB>());
for (const auto& op : cfg["Preprocess"]) {
std::string op_name = op["type"].as<std::string>();
if (op_name == "Resize") {
bool keep_ratio = op["keep_ratio"].as<bool>();
auto target_size = op["target_size"].as<std::vector<int>>();
int interp = op["interp"].as<int>();
FDASSERT(target_size.size() == 2,
"Require size of target_size be 2, but now it's %lu.",
target_size.size());
if (!keep_ratio) {
int width = target_size[1];
int height = target_size[0];
processors_.push_back(
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
} else {
int min_target_size = std::min(target_size[0], target_size[1]);
int max_target_size = std::max(target_size[0], target_size[1]);
std::vector<int> max_size;
if (max_target_size > 0) {
max_size.push_back(max_target_size);
max_size.push_back(max_target_size);
}
processors_.push_back(std::make_shared<ResizeByShort>(
min_target_size, interp, true, max_size));
}
} else if (op_name == "LetterBoxResize") {
auto target_size = op["target_size"].as<std::vector<int>>();
FDASSERT(target_size.size() == 2,
"Require size of target_size be 2, but now it's %lu.",
target_size.size());
std::vector<float> color{127.0f, 127.0f, 127.0f};
if (op["fill_value"].IsDefined()) {
color = op["fill_value"].as<std::vector<float>>();
}
processors_.push_back(
std::make_shared<LetterBoxResize>(target_size, color));
} else if (op_name == "NormalizeImage") {
auto mean = op["mean"].as<std::vector<float>>();
auto std = op["std"].as<std::vector<float>>();
bool is_scale = true;
if (op["is_scale"]) {
is_scale = op["is_scale"].as<bool>();
}
std::string norm_type = "mean_std";
if (op["norm_type"]) {
norm_type = op["norm_type"].as<std::string>();
}
if (norm_type != "mean_std") {
std::fill(mean.begin(), mean.end(), 0.0);
std::fill(std.begin(), std.end(), 1.0);
}
processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
} else if (op_name == "Permute") {
// Do nothing, do permute as the last operation
continue;
// processors_.push_back(std::make_shared<HWC2CHW>());
} else if (op_name == "Pad") {
auto size = op["size"].as<std::vector<int>>();
auto value = op["fill_value"].as<std::vector<float>>();
processors_.push_back(std::make_shared<Cast>("float"));
processors_.push_back(
std::make_shared<PadToSize>(size[1], size[0], value));
} else if (op_name == "PadStride") {
auto stride = op["stride"].as<int>();
processors_.push_back(
std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
} else {
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
processors_.push_back(std::make_shared<HWC2CHW>());
FuseTransforms(&processors_);
return true;
}
bool PPTracking::Initialize() {
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
return false;
}
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// create JDETracker instance
jdeTracker_ = std::unique_ptr<JDETracker>(new JDETracker);
return true;
}
bool PPTracking::Predict(cv::Mat* img, MOTResult* result) {
Mat mat(*img);
std::vector<FDTensor> input_tensors;
if (!Preprocess(&mat, &input_tensors)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, result)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
bool PPTracking::Preprocess(Mat* mat, std::vector<FDTensor>* outputs) {
int origin_w = mat->Width();
int origin_h = mat->Height();
for (size_t i = 0; i < processors_.size(); ++i) {
if (!(*(processors_[i].get()))(mat)) {
FDERROR << "Failed to process image data in " << processors_[i]->Name()
<< "." << std::endl;
return false;
}
}
// LetterBoxResize(mat);
// Normalize::Run(mat,mean_,scale_,is_scale_);
// HWC2CHW::Run(mat);
Cast::Run(mat, "float");
outputs->resize(3);
// image_shape
(*outputs)[0].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(0).name);
float* shape = static_cast<float*>((*outputs)[0].MutableData());
shape[0] = mat->Height();
shape[1] = mat->Width();
// image
(*outputs)[1].name = InputInfoOfRuntime(1).name;
mat->ShareWithTensor(&((*outputs)[1]));
(*outputs)[1].ExpandDim(0);
// scale
(*outputs)[2].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(2).name);
float* scale = static_cast<float*>((*outputs)[2].MutableData());
scale[0] = mat->Height() * 1.0 / origin_h;
scale[1] = mat->Width() * 1.0 / origin_w;
return true;
}
void FilterDets(const float conf_thresh, const cv::Mat& dets,
std::vector<int>* index) {
for (int i = 0; i < dets.rows; ++i) {
float score = *dets.ptr<float>(i, 4);
if (score > conf_thresh) {
index->push_back(i);
}
}
}
bool PPTracking::Postprocess(std::vector<FDTensor>& infer_result,
MOTResult* result) {
auto bbox_shape = infer_result[0].shape;
auto bbox_data = static_cast<float*>(infer_result[0].Data());
auto emb_shape = infer_result[1].shape;
auto emb_data = static_cast<float*>(infer_result[1].Data());
cv::Mat dets(bbox_shape[0], 6, CV_32FC1, bbox_data);
cv::Mat emb(bbox_shape[0], emb_shape[1], CV_32FC1, emb_data);
result->Clear();
std::vector<Track> tracks;
std::vector<int> valid;
FilterDets(conf_thresh_, dets, &valid);
cv::Mat new_dets, new_emb;
for (int i = 0; i < valid.size(); ++i) {
new_dets.push_back(dets.row(valid[i]));
new_emb.push_back(emb.row(valid[i]));
}
jdeTracker_->update(new_dets, new_emb, &tracks);
if (tracks.size() == 0) {
std::array<int, 4> box = {
int(*dets.ptr<float>(0, 0)), int(*dets.ptr<float>(0, 1)),
int(*dets.ptr<float>(0, 2)), int(*dets.ptr<float>(0, 3))};
result->boxes.push_back(box);
result->ids.push_back(1);
result->scores.push_back(*dets.ptr<float>(0, 4));
} else {
std::vector<Track>::iterator titer;
for (titer = tracks.begin(); titer != tracks.end(); ++titer) {
if (titer->score < tracked_thresh_) {
continue;
} else {
float w = titer->ltrb[2] - titer->ltrb[0];
float h = titer->ltrb[3] - titer->ltrb[1];
bool vertical = w / h > 1.6;
float area = w * h;
if (area > min_box_area_ && !vertical) {
std::array<int, 4> box = {int(titer->ltrb[0]), int(titer->ltrb[1]),
int(titer->ltrb[2]), int(titer->ltrb[3])};
result->boxes.push_back(box);
result->ids.push_back(titer->id);
result->scores.push_back(titer->score);
}
}
}
}
if (!is_record_trail_) return true;
int nums = result->boxes.size();
for (int i = 0; i < nums; i++) {
float center_x = (result->boxes[i][0] + result->boxes[i][2]) / 2;
float center_y = (result->boxes[i][1] + result->boxes[i][3]) / 2;
int id = result->ids[i];
recorder_->Add(id, {int(center_x), int(center_y)});
}
return true;
}
void PPTracking::BindRecorder(TrailRecorder* recorder) {
recorder_ = recorder;
is_record_trail_ = true;
}
void PPTracking::UnbindRecorder() {
is_record_trail_ = false;
std::map<int, std::vector<std::array<int, 2>>>::iterator iter;
for (iter = recorder_->records.begin(); iter != recorder_->records.end();
iter++) {
iter->second.clear();
iter->second.shrink_to_fit();
}
recorder_->records.clear();
std::map<int, std::vector<std::array<int, 2>>>().swap(recorder_->records);
recorder_ = nullptr;
}
} // namespace tracking
} // namespace vision
} // namespace fastdeploy