Files
FastDeploy/fastdeploy/vision/tracking/pptracking/lapjv.cc
ChaoII ba501fd963 [Model] add pptracking model (#357)
* add override mark

* delete some

* recovery

* recovery

* add tracking

* add tracking py_bind and example

* add pptracking

* add pptracking

* iomanip head file

* add opencv_video lib

* add python libs package

Signed-off-by: ChaoII <849453582@qq.com>

* complete comments

Signed-off-by: ChaoII <849453582@qq.com>

* add jdeTracker_ member variable

Signed-off-by: ChaoII <849453582@qq.com>

* add 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* remove kwargs params

Signed-off-by: ChaoII <849453582@qq.com>

* [Doc]update pptracking docs

* delete 'ENABLE_PADDLE_FRONTEND' switch

* add pptracking unit test

* update pptracking unit test

Signed-off-by: ChaoII <849453582@qq.com>

* modify test video file path and remove trt test

* update unit test model url

* remove 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* fix build python packages about pptracking on win32

Signed-off-by: ChaoII <849453582@qq.com>

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-26 14:27:55 +08:00

414 lines
9.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The code is based on:
// https://github.com/gatagat/lap/blob/master/lap/lapjv.cpp
// Ths copyright of gatagat/lap is as follows:
// MIT License
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fastdeploy/vision/tracking/pptracking/lapjv.h"
namespace fastdeploy {
namespace vision {
namespace tracking {
/** Column-reduction and reduction transfer for a dense cost matrix.
*/
int _ccrrt_dense(
const int n, float *cost[], int *free_rows, int *x, int *y, float *v) {
int n_free_rows;
bool *unique;
for (int i = 0; i < n; i++) {
x[i] = -1;
v[i] = LARGE;
y[i] = 0;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
const float c = cost[i][j];
if (c < v[j]) {
v[j] = c;
y[j] = i;
}
}
}
NEW(unique, bool, n);
memset(unique, TRUE, n);
{
int j = n;
do {
j--;
const int i = y[j];
if (x[i] < 0) {
x[i] = j;
} else {
unique[i] = FALSE;
y[j] = -1;
}
} while (j > 0);
}
n_free_rows = 0;
for (int i = 0; i < n; i++) {
if (x[i] < 0) {
free_rows[n_free_rows++] = i;
} else if (unique[i]) {
const int j = x[i];
float min = LARGE;
for (int j2 = 0; j2 < n; j2++) {
if (j2 == static_cast<int>(j)) {
continue;
}
const float c = cost[i][j2] - v[j2];
if (c < min) {
min = c;
}
}
v[j] -= min;
}
}
FREE(unique);
return n_free_rows;
}
/** Augmenting row reduction for a dense cost matrix.
*/
int _carr_dense(const int n,
float *cost[],
const int n_free_rows,
int *free_rows,
int *x,
int *y,
float *v) {
int current = 0;
int new_free_rows = 0;
int rr_cnt = 0;
while (current < n_free_rows) {
int i0;
int j1, j2;
float v1, v2, v1_new;
bool v1_lowers;
rr_cnt++;
const int free_i = free_rows[current++];
j1 = 0;
v1 = cost[free_i][0] - v[0];
j2 = -1;
v2 = LARGE;
for (int j = 1; j < n; j++) {
const float c = cost[free_i][j] - v[j];
if (c < v2) {
if (c >= v1) {
v2 = c;
j2 = j;
} else {
v2 = v1;
v1 = c;
j2 = j1;
j1 = j;
}
}
}
i0 = y[j1];
v1_new = v[j1] - (v2 - v1);
v1_lowers = v1_new < v[j1];
if (rr_cnt < current * n) {
if (v1_lowers) {
v[j1] = v1_new;
} else if (i0 >= 0 && j2 >= 0) {
j1 = j2;
i0 = y[j2];
}
if (i0 >= 0) {
if (v1_lowers) {
free_rows[--current] = i0;
} else {
free_rows[new_free_rows++] = i0;
}
}
} else {
if (i0 >= 0) {
free_rows[new_free_rows++] = i0;
}
}
x[free_i] = j1;
y[j1] = free_i;
}
return new_free_rows;
}
/** Find columns with minimum d[j] and put them on the SCAN list.
*/
int _find_dense(const int n, int lo, float *d, int *cols, int *y) {
int hi = lo + 1;
float mind = d[cols[lo]];
for (int k = hi; k < n; k++) {
int j = cols[k];
if (d[j] <= mind) {
if (d[j] < mind) {
hi = lo;
mind = d[j];
}
cols[k] = cols[hi];
cols[hi++] = j;
}
}
return hi;
}
// Scan all columns in TODO starting from arbitrary column in SCAN
// and try to decrease d of the TODO columns using the SCAN column.
int _scan_dense(const int n,
float *cost[],
int *plo,
int *phi,
float *d,
int *cols,
int *pred,
int *y,
float *v) {
int lo = *plo;
int hi = *phi;
float h, cred_ij;
while (lo != hi) {
int j = cols[lo++];
const int i = y[j];
const float mind = d[j];
h = cost[i][j] - v[j] - mind;
// For all columns in TODO
for (int k = hi; k < n; k++) {
j = cols[k];
cred_ij = cost[i][j] - v[j] - h;
if (cred_ij < d[j]) {
d[j] = cred_ij;
pred[j] = i;
if (cred_ij == mind) {
if (y[j] < 0) {
return j;
}
cols[k] = cols[hi];
cols[hi++] = j;
}
}
}
}
*plo = lo;
*phi = hi;
return -1;
}
/** Single iteration of modified Dijkstra shortest path algorithm as explained
* in the JV paper.
*
* This is a dense matrix version.
*
* \return The closest free column index.
*/
int find_path_dense(const int n,
float *cost[],
const int start_i,
int *y,
float *v,
int *pred) {
int lo = 0, hi = 0;
int final_j = -1;
int n_ready = 0;
int *cols;
float *d;
NEW(cols, int, n);
NEW(d, float, n);
for (int i = 0; i < n; i++) {
cols[i] = i;
pred[i] = start_i;
d[i] = cost[start_i][i] - v[i];
}
while (final_j == -1) {
// No columns left on the SCAN list.
if (lo == hi) {
n_ready = lo;
hi = _find_dense(n, lo, d, cols, y);
for (int k = lo; k < hi; k++) {
const int j = cols[k];
if (y[j] < 0) {
final_j = j;
}
}
}
if (final_j == -1) {
final_j = _scan_dense(n, cost, &lo, &hi, d, cols, pred, y, v);
}
}
{
const float mind = d[cols[lo]];
for (int k = 0; k < n_ready; k++) {
const int j = cols[k];
v[j] += d[j] - mind;
}
}
FREE(cols);
FREE(d);
return final_j;
}
/** Augment for a dense cost matrix.
*/
int _ca_dense(const int n,
float *cost[],
const int n_free_rows,
int *free_rows,
int *x,
int *y,
float *v) {
int *pred;
NEW(pred, int, n);
for (int *pfree_i = free_rows; pfree_i < free_rows + n_free_rows; pfree_i++) {
int i = -1, j;
int k = 0;
j = find_path_dense(n, cost, *pfree_i, y, v, pred);
while (i != *pfree_i) {
i = pred[j];
y[j] = i;
SWAP_INDICES(j, x[i]);
k++;
}
}
FREE(pred);
return 0;
}
/** Solve dense sparse LAP.
*/
int lapjv_internal(const cv::Mat &cost,
const bool extend_cost,
const float cost_limit,
int *x,
int *y) {
int n_rows = cost.rows;
int n_cols = cost.cols;
int n;
if (n_rows == n_cols) {
n = n_rows;
} else if (!extend_cost) {
throw std::invalid_argument(
"Square cost array expected. If cost is intentionally non-square, pass "
"extend_cost=True.");
}
// Get extend cost
if (extend_cost || cost_limit < LARGE) {
n = n_rows + n_cols;
}
cv::Mat cost_expand(n, n, CV_32F);
float expand_value;
if (cost_limit < LARGE) {
expand_value = cost_limit / 2;
} else {
double max_v;
minMaxLoc(cost, nullptr, &max_v);
expand_value = static_cast<float>(max_v) + 1.;
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cost_expand.at<float>(i, j) = expand_value;
if (i >= n_rows && j >= n_cols) {
cost_expand.at<float>(i, j) = 0;
} else if (i < n_rows && j < n_cols) {
cost_expand.at<float>(i, j) = cost.at<float>(i, j);
}
}
}
// Convert Mat to pointer array
float **cost_ptr;
NEW(cost_ptr, float *, n);
for (int i = 0; i < n; ++i) {
NEW(cost_ptr[i], float, n);
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cost_ptr[i][j] = cost_expand.at<float>(i, j);
}
}
int ret;
int *free_rows;
float *v;
int *x_c;
int *y_c;
NEW(free_rows, int, n);
NEW(v, float, n);
NEW(x_c, int, n);
NEW(y_c, int, n);
ret = _ccrrt_dense(n, cost_ptr, free_rows, x_c, y_c, v);
int i = 0;
while (ret > 0 && i < 2) {
ret = _carr_dense(n, cost_ptr, ret, free_rows, x_c, y_c, v);
i++;
}
if (ret > 0) {
ret = _ca_dense(n, cost_ptr, ret, free_rows, x_c, y_c, v);
}
FREE(v);
FREE(free_rows);
for (int i = 0; i < n; ++i) {
FREE(cost_ptr[i]);
}
FREE(cost_ptr);
if (ret != 0) {
if (ret == -1) {
throw "Out of memory.";
}
throw "Unknown error (lapjv_internal)";
}
// Get output of x, y, opt
for (int i = 0; i < n; ++i) {
if (i < n_rows) {
x[i] = x_c[i];
if (x[i] >= n_cols) {
x[i] = -1;
}
}
if (i < n_cols) {
y[i] = y_c[i];
if (y[i] >= n_rows) {
y[i] = -1;
}
}
}
FREE(x_c);
FREE(y_c);
return ret;
}
} // namespace tracking
} // namespace vision
} // namespace fastdeploy