Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ppocr_v2.cc
Zheng-Bicheng db5e90f285 [Model] Update PPOCR code style (#1160)
* 更新代码风格

* 更新代码风格

* 更新代码风格

* 更新代码风格
2023-01-17 19:51:06 +08:00

179 lines
6.3 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/ppocr_v2.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace pipeline {
PPOCRv2::PPOCRv2(fastdeploy::vision::ocr::DBDetector* det_model,
fastdeploy::vision::ocr::Classifier* cls_model,
fastdeploy::vision::ocr::Recognizer* rec_model)
: detector_(det_model), classifier_(cls_model), recognizer_(rec_model) {
Initialized();
auto preprocess_shape = recognizer_->GetPreprocessor().GetRecImageShape();
preprocess_shape[1] = 32;
recognizer_->GetPreprocessor().SetRecImageShape(preprocess_shape);
}
PPOCRv2::PPOCRv2(fastdeploy::vision::ocr::DBDetector* det_model,
fastdeploy::vision::ocr::Recognizer* rec_model)
: detector_(det_model), recognizer_(rec_model) {
Initialized();
auto preprocess_shape = recognizer_->GetPreprocessor().GetRecImageShape();
preprocess_shape[1] = 32;
recognizer_->GetPreprocessor().SetRecImageShape(preprocess_shape);
}
bool PPOCRv2::SetClsBatchSize(int cls_batch_size) {
if (cls_batch_size < -1 || cls_batch_size == 0) {
FDERROR << "batch_size > 0 or batch_size == -1." << std::endl;
return false;
}
cls_batch_size_ = cls_batch_size;
return true;
}
int PPOCRv2::GetClsBatchSize() {
return cls_batch_size_;
}
bool PPOCRv2::SetRecBatchSize(int rec_batch_size) {
if (rec_batch_size < -1 || rec_batch_size == 0) {
FDERROR << "batch_size > 0 or batch_size == -1." << std::endl;
return false;
}
rec_batch_size_ = rec_batch_size;
return true;
}
int PPOCRv2::GetRecBatchSize() {
return rec_batch_size_;
}
bool PPOCRv2::Initialized() const {
if (detector_ != nullptr && !detector_->Initialized()) {
return false;
}
if (classifier_ != nullptr && !classifier_->Initialized()) {
return false;
}
if (recognizer_ != nullptr && !recognizer_->Initialized()) {
return false;
}
return true;
}
std::unique_ptr<PPOCRv2> PPOCRv2::Clone() const {
std::unique_ptr<PPOCRv2> clone_model = utils::make_unique<PPOCRv2>(PPOCRv2(*this));
clone_model->detector_ = detector_->Clone().release();
if (classifier_ != nullptr) {
clone_model->classifier_ = classifier_->Clone().release();
}
clone_model->recognizer_ = recognizer_->Clone().release();
return clone_model;
}
bool PPOCRv2::Predict(cv::Mat* img,
fastdeploy::vision::OCRResult* result) {
return Predict(*img, result);
}
bool PPOCRv2::Predict(const cv::Mat& img,
fastdeploy::vision::OCRResult* result) {
std::vector<fastdeploy::vision::OCRResult> batch_result(1);
bool success = BatchPredict({img},&batch_result);
if(!success){
return success;
}
*result = std::move(batch_result[0]);
return true;
};
bool PPOCRv2::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<fastdeploy::vision::OCRResult>* batch_result) {
batch_result->clear();
batch_result->resize(images.size());
std::vector<std::vector<std::array<int, 8>>> batch_boxes(images.size());
if (!detector_->BatchPredict(images, &batch_boxes)) {
FDERROR << "There's error while detecting image in PPOCR." << std::endl;
return false;
}
for(int i_batch = 0; i_batch < batch_boxes.size(); ++i_batch) {
vision::ocr::SortBoxes(&(batch_boxes[i_batch]));
(*batch_result)[i_batch].boxes = batch_boxes[i_batch];
}
for(int i_batch = 0; i_batch < images.size(); ++i_batch) {
fastdeploy::vision::OCRResult& ocr_result = (*batch_result)[i_batch];
// Get croped images by detection result
const std::vector<std::array<int, 8>>& boxes = ocr_result.boxes;
const cv::Mat& img = images[i_batch];
std::vector<cv::Mat> image_list;
if (boxes.size() == 0) {
image_list.emplace_back(img);
}else{
image_list.resize(boxes.size());
for (size_t i_box = 0; i_box < boxes.size(); ++i_box) {
image_list[i_box] = vision::ocr::GetRotateCropImage(img, boxes[i_box]);
}
}
std::vector<int32_t>* cls_labels_ptr = &ocr_result.cls_labels;
std::vector<float>* cls_scores_ptr = &ocr_result.cls_scores;
std::vector<std::string>* text_ptr = &ocr_result.text;
std::vector<float>* rec_scores_ptr = &ocr_result.rec_scores;
if (nullptr != classifier_) {
for(size_t start_index = 0; start_index < image_list.size(); start_index+=cls_batch_size_) {
size_t end_index = std::min(start_index + cls_batch_size_, image_list.size());
if (!classifier_->BatchPredict(image_list, cls_labels_ptr, cls_scores_ptr, start_index, end_index)) {
FDERROR << "There's error while recognizing image in PPOCR." << std::endl;
return false;
}else{
for (size_t i_img = start_index; i_img < end_index; ++i_img) {
if(cls_labels_ptr->at(i_img) % 2 == 1 && cls_scores_ptr->at(i_img) > classifier_->GetPostprocessor().GetClsThresh()) {
cv::rotate(image_list[i_img], image_list[i_img], 1);
}
}
}
}
}
std::vector<float> width_list;
for (int i = 0; i < image_list.size(); i++) {
width_list.push_back(float(image_list[i].cols) / image_list[i].rows);
}
std::vector<int> indices = vision::ocr::ArgSort(width_list);
for(size_t start_index = 0; start_index < image_list.size(); start_index+=rec_batch_size_) {
size_t end_index = std::min(start_index + rec_batch_size_, image_list.size());
if (!recognizer_->BatchPredict(image_list, text_ptr, rec_scores_ptr, start_index, end_index, indices)) {
FDERROR << "There's error while recognizing image in PPOCR." << std::endl;
return false;
}
}
}
return true;
}
} // namesapce pipeline
} // namespace fastdeploy