mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
179 lines
6.3 KiB
C++
Executable File
179 lines
6.3 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/ppocr_v2.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace pipeline {
|
|
PPOCRv2::PPOCRv2(fastdeploy::vision::ocr::DBDetector* det_model,
|
|
fastdeploy::vision::ocr::Classifier* cls_model,
|
|
fastdeploy::vision::ocr::Recognizer* rec_model)
|
|
: detector_(det_model), classifier_(cls_model), recognizer_(rec_model) {
|
|
Initialized();
|
|
auto preprocess_shape = recognizer_->GetPreprocessor().GetRecImageShape();
|
|
preprocess_shape[1] = 32;
|
|
recognizer_->GetPreprocessor().SetRecImageShape(preprocess_shape);
|
|
}
|
|
|
|
PPOCRv2::PPOCRv2(fastdeploy::vision::ocr::DBDetector* det_model,
|
|
fastdeploy::vision::ocr::Recognizer* rec_model)
|
|
: detector_(det_model), recognizer_(rec_model) {
|
|
Initialized();
|
|
auto preprocess_shape = recognizer_->GetPreprocessor().GetRecImageShape();
|
|
preprocess_shape[1] = 32;
|
|
recognizer_->GetPreprocessor().SetRecImageShape(preprocess_shape);
|
|
}
|
|
|
|
bool PPOCRv2::SetClsBatchSize(int cls_batch_size) {
|
|
if (cls_batch_size < -1 || cls_batch_size == 0) {
|
|
FDERROR << "batch_size > 0 or batch_size == -1." << std::endl;
|
|
return false;
|
|
}
|
|
cls_batch_size_ = cls_batch_size;
|
|
return true;
|
|
}
|
|
|
|
int PPOCRv2::GetClsBatchSize() {
|
|
return cls_batch_size_;
|
|
}
|
|
|
|
bool PPOCRv2::SetRecBatchSize(int rec_batch_size) {
|
|
if (rec_batch_size < -1 || rec_batch_size == 0) {
|
|
FDERROR << "batch_size > 0 or batch_size == -1." << std::endl;
|
|
return false;
|
|
}
|
|
rec_batch_size_ = rec_batch_size;
|
|
return true;
|
|
}
|
|
|
|
int PPOCRv2::GetRecBatchSize() {
|
|
return rec_batch_size_;
|
|
}
|
|
|
|
bool PPOCRv2::Initialized() const {
|
|
|
|
if (detector_ != nullptr && !detector_->Initialized()) {
|
|
return false;
|
|
}
|
|
|
|
if (classifier_ != nullptr && !classifier_->Initialized()) {
|
|
return false;
|
|
}
|
|
|
|
if (recognizer_ != nullptr && !recognizer_->Initialized()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<PPOCRv2> PPOCRv2::Clone() const {
|
|
std::unique_ptr<PPOCRv2> clone_model = utils::make_unique<PPOCRv2>(PPOCRv2(*this));
|
|
clone_model->detector_ = detector_->Clone().release();
|
|
if (classifier_ != nullptr) {
|
|
clone_model->classifier_ = classifier_->Clone().release();
|
|
}
|
|
clone_model->recognizer_ = recognizer_->Clone().release();
|
|
return clone_model;
|
|
}
|
|
|
|
bool PPOCRv2::Predict(cv::Mat* img,
|
|
fastdeploy::vision::OCRResult* result) {
|
|
return Predict(*img, result);
|
|
}
|
|
|
|
bool PPOCRv2::Predict(const cv::Mat& img,
|
|
fastdeploy::vision::OCRResult* result) {
|
|
std::vector<fastdeploy::vision::OCRResult> batch_result(1);
|
|
bool success = BatchPredict({img},&batch_result);
|
|
if(!success){
|
|
return success;
|
|
}
|
|
*result = std::move(batch_result[0]);
|
|
return true;
|
|
};
|
|
|
|
bool PPOCRv2::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<fastdeploy::vision::OCRResult>* batch_result) {
|
|
batch_result->clear();
|
|
batch_result->resize(images.size());
|
|
std::vector<std::vector<std::array<int, 8>>> batch_boxes(images.size());
|
|
|
|
if (!detector_->BatchPredict(images, &batch_boxes)) {
|
|
FDERROR << "There's error while detecting image in PPOCR." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for(int i_batch = 0; i_batch < batch_boxes.size(); ++i_batch) {
|
|
vision::ocr::SortBoxes(&(batch_boxes[i_batch]));
|
|
(*batch_result)[i_batch].boxes = batch_boxes[i_batch];
|
|
}
|
|
|
|
for(int i_batch = 0; i_batch < images.size(); ++i_batch) {
|
|
fastdeploy::vision::OCRResult& ocr_result = (*batch_result)[i_batch];
|
|
// Get croped images by detection result
|
|
const std::vector<std::array<int, 8>>& boxes = ocr_result.boxes;
|
|
const cv::Mat& img = images[i_batch];
|
|
std::vector<cv::Mat> image_list;
|
|
if (boxes.size() == 0) {
|
|
image_list.emplace_back(img);
|
|
}else{
|
|
image_list.resize(boxes.size());
|
|
for (size_t i_box = 0; i_box < boxes.size(); ++i_box) {
|
|
image_list[i_box] = vision::ocr::GetRotateCropImage(img, boxes[i_box]);
|
|
}
|
|
}
|
|
std::vector<int32_t>* cls_labels_ptr = &ocr_result.cls_labels;
|
|
std::vector<float>* cls_scores_ptr = &ocr_result.cls_scores;
|
|
|
|
std::vector<std::string>* text_ptr = &ocr_result.text;
|
|
std::vector<float>* rec_scores_ptr = &ocr_result.rec_scores;
|
|
|
|
if (nullptr != classifier_) {
|
|
for(size_t start_index = 0; start_index < image_list.size(); start_index+=cls_batch_size_) {
|
|
size_t end_index = std::min(start_index + cls_batch_size_, image_list.size());
|
|
if (!classifier_->BatchPredict(image_list, cls_labels_ptr, cls_scores_ptr, start_index, end_index)) {
|
|
FDERROR << "There's error while recognizing image in PPOCR." << std::endl;
|
|
return false;
|
|
}else{
|
|
for (size_t i_img = start_index; i_img < end_index; ++i_img) {
|
|
if(cls_labels_ptr->at(i_img) % 2 == 1 && cls_scores_ptr->at(i_img) > classifier_->GetPostprocessor().GetClsThresh()) {
|
|
cv::rotate(image_list[i_img], image_list[i_img], 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<float> width_list;
|
|
for (int i = 0; i < image_list.size(); i++) {
|
|
width_list.push_back(float(image_list[i].cols) / image_list[i].rows);
|
|
}
|
|
std::vector<int> indices = vision::ocr::ArgSort(width_list);
|
|
|
|
for(size_t start_index = 0; start_index < image_list.size(); start_index+=rec_batch_size_) {
|
|
size_t end_index = std::min(start_index + rec_batch_size_, image_list.size());
|
|
if (!recognizer_->BatchPredict(image_list, text_ptr, rec_scores_ptr, start_index, end_index, indices)) {
|
|
FDERROR << "There's error while recognizing image in PPOCR." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namesapce pipeline
|
|
} // namespace fastdeploy
|