Files
FastDeploy/fastdeploy/vision/ocr/ppocr/det_postprocessor.cc
Zheng-Bicheng db5e90f285 [Model] Update PPOCR code style (#1160)
* 更新代码风格

* 更新代码风格

* 更新代码风格

* 更新代码风格
2023-01-17 19:51:06 +08:00

99 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/det_postprocessor.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
bool DBDetectorPostprocessor::SingleBatchPostprocessor(
const float* out_data, int n2, int n3,
const std::array<int, 4>& det_img_info,
std::vector<std::array<int, 8>>* boxes_result) {
int n = n2 * n3;
// prepare bitmap
std::vector<float> pred(n, 0.0);
std::vector<unsigned char> cbuf(n, ' ');
for (int i = 0; i < n; i++) {
pred[i] = float(out_data[i]);
cbuf[i] = (unsigned char)((out_data[i]) * 255);
}
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char*)cbuf.data());
cv::Mat pred_map(n2, n3, CV_32F, (float*)pred.data());
const double threshold = det_db_thresh_ * 255;
const double maxvalue = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
if (use_dilation_) {
cv::Mat dila_ele =
cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, bit_map, dila_ele);
}
std::vector<std::vector<std::vector<int>>> boxes;
boxes = util_post_processor_.BoxesFromBitmap(
pred_map, bit_map, det_db_box_thresh_, det_db_unclip_ratio_,
det_db_score_mode_);
boxes = util_post_processor_.FilterTagDetRes(boxes, det_img_info);
// boxes to boxes_result
for (int i = 0; i < boxes.size(); i++) {
std::array<int, 8> new_box;
int k = 0;
for (auto& vec : boxes[i]) {
for (auto& e : vec) {
new_box[k++] = e;
}
}
boxes_result->emplace_back(new_box);
}
return true;
}
bool DBDetectorPostprocessor::Run(
const std::vector<FDTensor>& tensors,
std::vector<std::vector<std::array<int, 8>>>* results,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
// DBDetector have only 1 output tensor.
const FDTensor& tensor = tensors[0];
// For DBDetector, the output tensor shape = [batch, 1, ?, ?]
size_t batch = tensor.shape[0];
size_t length = accumulate(tensor.shape.begin() + 1, tensor.shape.end(), 1,
std::multiplies<int>());
const float* tensor_data = reinterpret_cast<const float*>(tensor.Data());
results->resize(batch);
for (int i_batch = 0; i_batch < batch; ++i_batch) {
SingleBatchPostprocessor(tensor_data, tensor.shape[2], tensor.shape[3],
batch_det_img_info[i_batch],
&results->at(i_batch));
tensor_data = tensor_data + length;
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy