mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* avoid mem copy for cpp benchmark * set CMAKE_BUILD_TYPE to Release * Add SegmentationDiff * change pointer to reference * fixed bug * cast uint8 to int32 * Add diff compare for OCR * Add diff compare for OCR * rm ppocr pipeline * Add yolov5 diff compare * Add yolov5 diff compare * deal with comments * deal with comments * fixed bug * fixed bug
183 lines
6.4 KiB
C++
183 lines
6.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/matting/contrib/rvm.h"
|
|
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace matting {
|
|
|
|
RobustVideoMatting::RobustVideoMatting(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool RobustVideoMatting::Initialize() {
|
|
// parameters for preprocess
|
|
size = {1080, 1920};
|
|
|
|
video_mode = true;
|
|
|
|
swap_rb = true;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RobustVideoMatting::Preprocess(
|
|
Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<int, 2>>* im_info) {
|
|
// Resize
|
|
int resize_w = size[0];
|
|
int resize_h = size[1];
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
// Convert_and_permute(swap_rb=true)
|
|
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
|
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
|
ConvertAndPermute::Run(mat, alpha, beta, swap_rb);
|
|
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->ExpandDim(0); // reshape to n, c, h, w
|
|
return true;
|
|
}
|
|
|
|
bool RobustVideoMatting::Postprocess(
|
|
std::vector<FDTensor>& infer_result, MattingResult* result,
|
|
const std::map<std::string, std::array<int, 2>>& im_info) {
|
|
FDASSERT((infer_result.size() == 6),
|
|
"The default number of output tensor must be 6 according to "
|
|
"RobustVideoMatting.");
|
|
FDTensor& fgr = infer_result.at(0); // fgr (1, 3, h, w) 0.~1.
|
|
FDTensor& alpha = infer_result.at(1); // alpha (1, 1, h, w) 0.~1.
|
|
FDASSERT((fgr.shape[0] == 1), "Only support batch = 1 now.");
|
|
FDASSERT((alpha.shape[0] == 1), "Only support batch = 1 now.");
|
|
if (fgr.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
if (alpha.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
// update context
|
|
if (video_mode) {
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FDTensor& rki = infer_result.at(i + 2);
|
|
dynamic_inputs_dims_[i] = rki.shape;
|
|
dynamic_inputs_datas_[i].resize(rki.Numel());
|
|
memcpy(dynamic_inputs_datas_[i].data(), rki.Data(),
|
|
rki.Numel() * FDDataTypeSize(rki.dtype));
|
|
}
|
|
}
|
|
|
|
auto iter_in = im_info.find("input_shape");
|
|
auto iter_out = im_info.find("output_shape");
|
|
FDASSERT(iter_out != im_info.end() && iter_in != im_info.end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
int out_h = iter_out->second[0];
|
|
int out_w = iter_out->second[1];
|
|
int in_h = iter_in->second[0];
|
|
int in_w = iter_in->second[1];
|
|
|
|
// for alpha
|
|
float* alpha_ptr = static_cast<float*>(alpha.Data());
|
|
Mat alpha_resized = Mat::Create(out_h, out_w, 1, FDDataType::FP32,
|
|
alpha_ptr); // ref-only, zero copy.
|
|
if ((out_h != in_h) || (out_w != in_w)) {
|
|
Resize::Run(&alpha_resized, in_w, in_h, -1, -1);
|
|
}
|
|
|
|
// for foreground
|
|
float* fgr_ptr = static_cast<float*>(fgr.Data());
|
|
Mat fgr_resized = Mat::Create(out_h, out_w, 1, FDDataType::FP32,
|
|
fgr_ptr); // ref-only, zero copy.
|
|
if ((out_h != in_h) || (out_w != in_w)) {
|
|
Resize::Run(&fgr_resized, in_w, in_h, -1, -1);
|
|
}
|
|
|
|
result->contain_foreground = true;
|
|
// if contain_foreground == true, shape must set to (h, w, c)
|
|
result->shape = {static_cast<int64_t>(in_h), static_cast<int64_t>(in_w), 3};
|
|
int numel = in_h * in_w;
|
|
int nbytes = numel * sizeof(float);
|
|
result->Resize(numel);
|
|
memcpy(result->alpha.data(), alpha_resized.Data(), nbytes);
|
|
memcpy(result->foreground.data(), fgr_resized.Data(), nbytes);
|
|
return true;
|
|
}
|
|
|
|
bool RobustVideoMatting::Predict(cv::Mat* im, MattingResult* result) {
|
|
Mat mat(*im);
|
|
int inputs_nums = NumInputsOfRuntime();
|
|
std::vector<FDTensor> input_tensors(inputs_nums);
|
|
std::map<std::string, std::array<int, 2>> im_info;
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {mat.Height(), mat.Width()};
|
|
im_info["output_shape"] = {mat.Height(), mat.Width()};
|
|
// convert vector to FDTensor
|
|
for (size_t i = 1; i < inputs_nums; ++i) {
|
|
input_tensors[i].SetExternalData(dynamic_inputs_dims_[i - 1],
|
|
FDDataType::FP32,
|
|
dynamic_inputs_datas_[i - 1].data());
|
|
input_tensors[i].device = Device::CPU;
|
|
}
|
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < inputs_nums; ++i) {
|
|
input_tensors[i].name = InputInfoOfRuntime(i).name;
|
|
}
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(output_tensors, result, im_info)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace matting
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|