Files
FastDeploy/fastdeploy/vision/matting/contrib/modnet.cc
WJJ1995 d3845eb4e1 [Benchmark]Compare diff for OCR (#1415)
* avoid mem copy for cpp benchmark

* set CMAKE_BUILD_TYPE to Release

* Add SegmentationDiff

* change pointer to reference

* fixed bug

* cast uint8 to int32

* Add diff compare for OCR

* Add diff compare for OCR

* rm ppocr pipeline

* Add yolov5 diff compare

* Add yolov5 diff compare

* deal with comments

* deal with comments

* fixed bug

* fixed bug
2023-02-23 18:57:39 +08:00

156 lines
5.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/matting/contrib/modnet.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace matting {
MODNet::MODNet(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool MODNet::Initialize() {
// parameters for preprocess
size = {256, 256};
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
beta = {-1.f, -1.f, -1.f}; // RGB
swap_rb = true;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool MODNet::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info) {
// 1. Resize
// 2. BGR2RGB
// 3. Convert(opencv style) or Normalize
// 4. HWC2CHW
int resize_w = size[0];
int resize_h = size[1];
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (swap_rb) {
BGR2RGB::Run(mat);
}
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
return true;
}
bool MODNet::Postprocess(
std::vector<FDTensor>& infer_result, MattingResult* result,
const std::map<std::string, std::array<int, 2>>& im_info) {
FDASSERT((infer_result.size() == 1),
"The default number of output tensor must be 1 according to "
"modnet.");
FDTensor& alpha_tensor = infer_result.at(0); // (1, 1, h, w)
FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch =1 now.");
if (alpha_tensor.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
auto iter_ipt = im_info.find("input_shape");
auto iter_out = im_info.find("output_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
int out_h = iter_out->second[0];
int out_w = iter_out->second[1];
int ipt_h = iter_ipt->second[0];
int ipt_w = iter_ipt->second[1];
float* alpha_ptr = static_cast<float*>(alpha_tensor.Data());
// cv::Mat alpha_zero_copy_ref(out_h, out_w, CV_32FC1, alpha_ptr);
// Mat alpha_resized(alpha_zero_copy_ref); // ref-only, zero copy.
Mat alpha_resized = Mat::Create(out_h, out_w, 1, FDDataType::FP32,
alpha_ptr); // ref-only, zero copy.
if ((out_h != ipt_h) || (out_w != ipt_w)) {
Resize::Run(&alpha_resized, ipt_w, ipt_h, -1, -1);
}
result->Clear();
// note: must be setup shape before Resize
result->contain_foreground = false;
result->shape = {static_cast<int64_t>(ipt_h), static_cast<int64_t>(ipt_w)};
int numel = ipt_h * ipt_w;
int nbytes = numel * sizeof(float);
result->Resize(numel);
std::memcpy(result->alpha.data(), alpha_resized.Data(), nbytes);
return true;
}
bool MODNet::Predict(cv::Mat* im, MattingResult* result) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<int, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {mat.Height(), mat.Width()};
im_info["output_shape"] = {mat.Height(), mat.Width()};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, result, im_info)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace matting
} // namespace vision
} // namespace fastdeploy