mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add style transfer model * add examples for generation model * add unit test * add speed comparison * add speed comparison * add variable for constant * add preprocessor and postprocessor * add preprocessor and postprocessor * fix * fix according to review Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
64 lines
2.1 KiB
C++
64 lines
2.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/generation/contrib/preprocessor.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace generation {
|
|
|
|
bool AnimeGANPreprocessor::Run(std::vector<Mat>& images, std::vector<FDTensor>* outputs) {
|
|
// 1. BGR2RGB
|
|
// 2. Convert(opencv style) or Normalize
|
|
for (size_t i = 0; i < images.size(); ++i) {
|
|
auto ret = BGR2RGB::Run(&images[i]);
|
|
if (!ret) {
|
|
FDERROR << "Failed to processs image:" << i << " in "
|
|
<< "BGR2RGB" << "." << std::endl;
|
|
return false;
|
|
}
|
|
ret = Cast::Run(&images[i], "float");
|
|
if (!ret) {
|
|
FDERROR << "Failed to processs image:" << i << " in "
|
|
<< "Cast" << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<float> mean{1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
std::vector<float> std {-1.f, -1.f, -1.f};
|
|
ret = Convert::Run(&images[i], mean, std);
|
|
if (!ret) {
|
|
FDERROR << "Failed to processs image:" << i << " in "
|
|
<< "Cast" << "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
outputs->resize(1);
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(images.size());
|
|
for (size_t i = 0; i < images.size(); ++i) {
|
|
images[i].ShareWithTensor(&(tensors[i]));
|
|
tensors[i].ExpandDim(0);
|
|
}
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace generation
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|