Files
FastDeploy/fastdeploy/vision/generation/contrib/animegan.h
chenjian 87bcb5df21 [Model] add style transfer model (#922)
* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-03 10:47:08 +08:00

80 lines
3.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/generation/contrib/preprocessor.h"
#include "fastdeploy/vision/generation/contrib/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace generation {
/*! @brief AnimeGAN model object is used when load a AnimeGAN model.
*/
class FASTDEPLOY_DECL AnimeGAN : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./model.pdmodel
* \param[in] params_file Path of parameter file, e.g ./model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is PADDLE format
*/
AnimeGAN(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
std::string ModelName() const { return "styletransfer/animegan"; }
/** \brief Predict the style transfer result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output style transfer result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
bool Predict(cv::Mat& img, cv::Mat* result);
/** \brief Predict the style transfer result for a batch of input images
*
* \param[in] images The list of input images, each element comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] results The list of output style transfer results will be writen to this structure
* \return true if the batch prediction successed, otherwise false
*/
bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<cv::Mat>* results);
// Get preprocessor reference of AnimeGAN
AnimeGANPreprocessor& GetPreprocessor() {
return preprocessor_;
}
// Get postprocessor reference of AnimeGAN
AnimeGANPostprocessor& GetPostprocessor() {
return postprocessor_;
}
private:
bool Initialize();
AnimeGANPreprocessor preprocessor_;
AnimeGANPostprocessor postprocessor_;
};
} // namespace generation
} // namespace vision
} // namespace fastdeploy