Files
FastDeploy/fastdeploy/vision/faceid/contrib/adaface/adaface.cc
Zheng_Bicheng ec67f8ee6d [Model] Refactor insightface models (#919)
* 重构insightface代码

* 重写insightface example代码

* 重写insightface example代码

* 删除多余代码

* 修改预处理代码

* 修改文档

* 修改文档

* 恢复误删除的文件

* 修改cpp example

* 修改cpp example

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 跑通python代码

* 修复重复初始化的bug

* 更新adaface的python代码

* 修复c++重复初始化的问题

* 修复c++重复初始化的问题

* 修复Python重复初始化的问题

* 新增preprocess的几个参数的获取方式

* 修复注释的错误

* 按照要求修改

* 修改文档中的图片为图片压缩包

* 修改编译完成后程序的提示

* 更新错误include

* 删除无用文件

* 更新文档
2022-12-26 21:01:58 +08:00

85 lines
2.7 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/faceid/contrib/adaface/adaface.h"
namespace fastdeploy {
namespace vision {
namespace faceid {
AdaFace::AdaFace(
const std::string& model_file, const std::string& params_file,
const fastdeploy::RuntimeOption& custom_option,
const fastdeploy::ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool AdaFace::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool AdaFace::Predict(const cv::Mat& im,
FaceRecognitionResult* result) {
std::vector<FaceRecognitionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
if(!results.empty()){
*result = std::move(results[0]);
}
return true;
}
bool AdaFace::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<FaceRecognitionResult>* results){
std::vector<FDMat> fd_images = WrapMat(images);
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results)){
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace faceid
} // namespace vision
} // namespace fastdeploy