mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
85 lines
2.7 KiB
C++
Executable File
85 lines
2.7 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/faceid/contrib/adaface/adaface.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace faceid {
|
|
|
|
AdaFace::AdaFace(
|
|
const std::string& model_file, const std::string& params_file,
|
|
const fastdeploy::RuntimeOption& custom_option,
|
|
const fastdeploy::ModelFormat& model_format) {
|
|
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool AdaFace::Initialize() {
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AdaFace::Predict(const cv::Mat& im,
|
|
FaceRecognitionResult* result) {
|
|
std::vector<FaceRecognitionResult> results;
|
|
if (!BatchPredict({im}, &results)) {
|
|
return false;
|
|
}
|
|
if(!results.empty()){
|
|
*result = std::move(results[0]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AdaFace::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<FaceRecognitionResult>* results){
|
|
std::vector<FDMat> fd_images = WrapMat(images);
|
|
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
|
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!postprocessor_.Run(reused_output_tensors_, results)){
|
|
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace faceid
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|