mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-10 19:10:20 +08:00

* fit yolov7face file path * TODO:添加yolov7facePython接口Predict * resolve yolov7face.py * resolve yolov7face.py * resolve yolov7face.py * add yolov7face example readme file * [Doc] fix yolov7face example readme file * [Doc]fix yolov7face example readme file * support BlazeFace * add blazeface readme file * fix review problem * fix code style error * fix review problem * fix review problem * fix head file problem * fix review problem * fix review problem * fix readme file problem * add English readme file * fix English readme file
97 lines
3.3 KiB
C++
97 lines
3.3 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/facedet/ppdet/blazeface/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "fastdeploy/vision/detection/ppdet/multiclass_nms.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace facedet {
|
|
|
|
BlazeFacePostprocessor::BlazeFacePostprocessor() {
|
|
conf_threshold_ = 0.5;
|
|
nms_threshold_ = 0.3;
|
|
}
|
|
|
|
bool BlazeFacePostprocessor::Run(const std::vector<FDTensor>& tensors,
|
|
std::vector<FaceDetectionResult>* results,
|
|
const std::vector<std::map<std::string,
|
|
std::array<float, 2>>>& ims_info) {
|
|
// Get number of boxes for each input image
|
|
std::vector<int> num_boxes(tensors[1].shape[0]);
|
|
int total_num_boxes = 0;
|
|
if (tensors[1].dtype == FDDataType::INT32) {
|
|
const auto* data = static_cast<const int32_t*>(tensors[1].CpuData());
|
|
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
|
|
num_boxes[i] = static_cast<int>(data[i]);
|
|
total_num_boxes += num_boxes[i];
|
|
}
|
|
} else if (tensors[1].dtype == FDDataType::INT64) {
|
|
const auto* data = static_cast<const int64_t*>(tensors[1].CpuData());
|
|
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
|
|
num_boxes[i] = static_cast<int>(data[i]);
|
|
}
|
|
}
|
|
|
|
// Special case for TensorRT, it has fixed output shape of NMS
|
|
// So there's invalid boxes in its' output boxes
|
|
int num_output_boxes = static_cast<int>(tensors[0].Shape()[0]);
|
|
bool contain_invalid_boxes = false;
|
|
if (total_num_boxes != num_output_boxes) {
|
|
if (num_output_boxes % num_boxes.size() == 0) {
|
|
contain_invalid_boxes = true;
|
|
} else {
|
|
FDERROR << "Cannot handle the output data for this model, unexpected "
|
|
"situation."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Get boxes for each input image
|
|
results->resize(num_boxes.size());
|
|
|
|
if (tensors[0].shape[0] == 0) {
|
|
// No detected boxes
|
|
return true;
|
|
}
|
|
|
|
const auto* box_data = static_cast<const float*>(tensors[0].CpuData());
|
|
int offset = 0;
|
|
for (size_t i = 0; i < num_boxes.size(); ++i) {
|
|
const float* ptr = box_data + offset;
|
|
(*results)[i].Reserve(num_boxes[i]);
|
|
for (size_t j = 0; j < num_boxes[i]; ++j) {
|
|
if (ptr[j * 6 + 1] > conf_threshold_) {
|
|
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
|
|
(*results)[i].boxes.emplace_back(std::array<float, 4>(
|
|
{ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
|
|
}
|
|
}
|
|
if (contain_invalid_boxes) {
|
|
offset += static_cast<int>(num_output_boxes * 6 / num_boxes.size());
|
|
} else {
|
|
offset += static_cast<int>(num_boxes[i] * 6);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|