mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-09 18:40:18 +08:00

* cpp example run success * add landmarks * fix reviewed problem * add pybind * add readme in examples * fix reviewed problem * new file: tests/models/test_centerface.py * fix reviewed problem 230202
87 lines
2.8 KiB
C++
87 lines
2.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/facedet/contrib/centerface/centerface.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy{
|
|
|
|
namespace vision{
|
|
|
|
namespace facedet{
|
|
|
|
CenterFace::CenterFace(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool CenterFace::Initialize(){
|
|
if (!InitRuntime()){
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CenterFace::Predict(const cv::Mat& im, FaceDetectionResult* result){
|
|
std::vector<FaceDetectionResult> results;
|
|
if (!BatchPredict({im}, &results)) {
|
|
return false;
|
|
}
|
|
*result = std::move(results[0]);
|
|
return true;
|
|
}
|
|
|
|
bool CenterFace::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<FaceDetectionResult>* results){
|
|
std::vector<FDMat> fd_images = WrapMat(images);
|
|
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
|
|
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)){
|
|
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace facedet
|
|
|
|
} // namespace vision
|
|
|
|
} // namespace fastdeploy
|