Files
FastDeploy/fastdeploy/vision/detection/ppdet/preprocessor.cc
Wang Xinyu cb7c8a07d4 [CVCUDA] PaddleDetection preprocessor support CV-CUDA (#1493)
* ppdet preproc use manager

* pad_to_size chw opencv

* pad_to_size chw flycv

* fix pad_to_size flycv

* add warning message

* cvcuda convert cubic to linear, padToSize cvcuda

* stridedpad cvcuda

* fix flycv include

* fix flycv include

* fix flycv build

* cast cvcuda

* fix pybind

* fix normalize permute cuda

* base processor move funcs to cc

* Update pad_to_size.cc
2023-03-10 12:43:57 +08:00

228 lines
8.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "fastdeploy/function/pad.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace detection {
PaddleDetPreprocessor::PaddleDetPreprocessor(const std::string& config_file) {
this->config_file_ = config_file;
FDASSERT(BuildPreprocessPipelineFromConfig(),
"Failed to create PaddleDetPreprocessor.");
initialized_ = true;
}
bool PaddleDetPreprocessor::BuildPreprocessPipelineFromConfig() {
processors_.clear();
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file_);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file_
<< ", maybe you should check this file." << std::endl;
return false;
}
// read for postprocess
if (cfg["arch"].IsDefined()) {
arch_ = cfg["arch"].as<std::string>();
} else {
FDERROR << "Please set model arch,"
<< "support value : SOLOv2, YOLO, SSD, RetinaNet, RCNN, Face." << std::endl;
return false;
}
// read for preprocess
processors_.push_back(std::make_shared<BGR2RGB>());
bool has_permute = false;
for (const auto& op : cfg["Preprocess"]) {
std::string op_name = op["type"].as<std::string>();
if (op_name == "NormalizeImage") {
if (!disable_normalize_) {
auto mean = op["mean"].as<std::vector<float>>();
auto std = op["std"].as<std::vector<float>>();
bool is_scale = true;
if (op["is_scale"]) {
is_scale = op["is_scale"].as<bool>();
}
std::string norm_type = "mean_std";
if (op["norm_type"]) {
norm_type = op["norm_type"].as<std::string>();
}
if (norm_type != "mean_std") {
std::fill(mean.begin(), mean.end(), 0.0);
std::fill(std.begin(), std.end(), 1.0);
}
processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
}
} else if (op_name == "Resize") {
bool keep_ratio = op["keep_ratio"].as<bool>();
auto target_size = op["target_size"].as<std::vector<int>>();
int interp = op["interp"].as<int>();
FDASSERT(target_size.size() == 2,
"Require size of target_size be 2, but now it's %lu.",
target_size.size());
if (!keep_ratio) {
int width = target_size[1];
int height = target_size[0];
processors_.push_back(
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
} else {
int min_target_size = std::min(target_size[0], target_size[1]);
int max_target_size = std::max(target_size[0], target_size[1]);
std::vector<int> max_size;
if (max_target_size > 0) {
max_size.push_back(max_target_size);
max_size.push_back(max_target_size);
}
processors_.push_back(std::make_shared<ResizeByShort>(
min_target_size, interp, true, max_size));
}
} else if (op_name == "Permute") {
// Do nothing, do permute as the last operation
has_permute = true;
continue;
} else if (op_name == "Pad") {
auto size = op["size"].as<std::vector<int>>();
auto value = op["fill_value"].as<std::vector<float>>();
processors_.push_back(
std::make_shared<PadToSize>(size[1], size[0], value));
} else if (op_name == "PadStride") {
auto stride = op["stride"].as<int>();
processors_.push_back(
std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
} else {
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
if (!disable_permute_) {
if (has_permute) {
// permute = cast<float> + HWC2CHW
processors_.push_back(std::make_shared<Cast>("float"));
processors_.push_back(std::make_shared<HWC2CHW>());
}
}
// Fusion will improve performance
FuseTransforms(&processors_);
return true;
}
bool PaddleDetPreprocessor::Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs) {
if (!initialized_) {
FDERROR << "The preprocessor is not initialized." << std::endl;
return false;
}
if (image_batch->mats->empty()) {
FDERROR << "The size of input images should be greater than 0."
<< std::endl;
return false;
}
// There are 3 outputs, image, scale_factor, im_shape
// But im_shape is not used for all the PaddleDetection models
// So preprocessor will output the 3 FDTensors, and how to use `im_shape`
// is decided by the model itself
outputs->resize(3);
int batch = static_cast<int>(image_batch->mats->size());
// Allocate memory for scale_factor
(*outputs)[1].Resize({batch, 2}, FDDataType::FP32);
// Allocate memory for im_shape
(*outputs)[2].Resize({batch, 2}, FDDataType::FP32);
// Record the max size for a batch of input image
// All the tensor will pad to the max size to compose a batched tensor
std::vector<int> max_hw({-1, -1});
auto* scale_factor_ptr =
reinterpret_cast<float*>((*outputs)[1].MutableData());
auto* im_shape_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
int origin_w = mat->Width();
int origin_h = mat->Height();
scale_factor_ptr[2 * i] = 1.0;
scale_factor_ptr[2 * i + 1] = 1.0;
for (size_t j = 0; j < processors_.size(); ++j) {
if (!(*(processors_[j].get()))(mat)) {
FDERROR << "Failed to processs image:" << i << " in "
<< processors_[j]->Name() << "." << std::endl;
return false;
}
if (processors_[j]->Name().find("Resize") != std::string::npos) {
scale_factor_ptr[2 * i] = mat->Height() * 1.0 / origin_h;
scale_factor_ptr[2 * i + 1] = mat->Width() * 1.0 / origin_w;
}
}
if (mat->Height() > max_hw[0]) {
max_hw[0] = mat->Height();
}
if (mat->Width() > max_hw[1]) {
max_hw[1] = mat->Width();
}
im_shape_ptr[2 * i] = max_hw[0];
im_shape_ptr[2 * i + 1] = max_hw[1];
}
// if the size of image less than max_hw, pad to max_hw
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
if (mat->Height() < max_hw[0] || mat->Width() < max_hw[1]) {
pad_op_->SetWidthHeight(max_hw[1], max_hw[0]);
(*pad_op_)(mat);
}
}
// Get the NCHW tensor
FDTensor* tensor = image_batch->Tensor();
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
tensor->Data(), tensor->device,
tensor->device_id);
return true;
}
void PaddleDetPreprocessor::DisableNormalize() {
this->disable_normalize_ = true;
// the DisableNormalize function will be invalid if the configuration file is
// loaded during preprocessing
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
}
}
void PaddleDetPreprocessor::DisablePermute() {
this->disable_permute_ = true;
// the DisablePermute function will be invalid if the configuration file is
// loaded during preprocessing
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
}
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy