Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov7end2end_trt.h
Wang Xinyu e5c955dd3e [Model] yolo use external stream, avoid reallocating output tensors (#447)
* yolov5 use external stream

* yolov5lite/v6/v7/v7e2etrt: optimize output tensor and cuda stream

* avoid reallocating output tensors

* add input output tensors to FastDeployModel

* add cuda.cmake

* rename to reused_input/output_tensors

* eliminate cmake cuda arch error

* use swap to release input and output tensors

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-02 09:52:27 +08:00

107 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv7End2EndTRT model object used when to load a YOLOv7End2EndTRT model exported by YOLOv7.
*/
class FASTDEPLOY_DECL YOLOv7End2EndTRT : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7end2end_trt.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7End2EndTRT(const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
~YOLOv7End2EndTRT();
virtual std::string ModelName() const { return "yolov7end2end_trt"; }
/** \brief Predict the detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25);
void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
/*! @brief
Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default size = {640, 640}
*/
std::vector<int> size;
// padding value, size should be the same as channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool CudaPreprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(std::vector<FDTensor>& infer_results,
DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold);
void LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill = false, bool scale_up = true,
int stride = 32);
bool is_dynamic_input_;
// CUDA host buffer for input image
uint8_t* input_img_cuda_buffer_host_ = nullptr;
// CUDA device buffer for input image
uint8_t* input_img_cuda_buffer_device_ = nullptr;
// CUDA device buffer for TRT input tensor
float* input_tensor_cuda_buffer_device_ = nullptr;
// Whether to use CUDA preprocessing
bool use_cuda_preprocessing_ = false;
// CUDA stream
void* cuda_stream_ = nullptr;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy