Files
FastDeploy/fastdeploy/vision/detection/contrib/fastestdet/fastestdet_pybind.cc
guxukai 866d044898 [Model] add detection model : FastestDet (#842)
* model done, CLA fix

* remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess

* remove useless values in preprocess

* remove useless values in preprocess

* fix reviewed problem

* fix reviewed problem pybind

* fix reviewed problem pybind

* postprocess fix

* add test_fastestdet.py, coco_val2017_500 fixed done, ready to review

* fix reviewed problem

* python/.../fastestdet.py

* fix infer.cc, preprocess, python/fastestdet.py

* fix examples/python/infer.py
2022-12-28 10:49:17 +08:00

86 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindFastestDet(pybind11::module& m) {
pybind11::class_<vision::detection::FastestDetPreprocessor>(
m, "FastestDetPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::FastestDetPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("raise Exception('Failed to preprocess the input data in FastestDetPreprocessor.')");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::FastestDetPreprocessor::GetSize, &vision::detection::FastestDetPreprocessor::SetSize);
pybind11::class_<vision::detection::FastestDetPostprocessor>(
m, "FastestDetPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
}
return results;
})
.def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
}
return results;
})
.def_property("conf_threshold", &vision::detection::FastestDetPostprocessor::GetConfThreshold, &vision::detection::FastestDetPostprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::FastestDetPostprocessor::GetNMSThreshold, &vision::detection::FastestDetPostprocessor::SetNMSThreshold);
pybind11::class_<vision::detection::FastestDet, FastDeployModel>(m, "FastestDet")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::FastestDet& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::FastestDet& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::FastestDet::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::FastestDet::GetPostprocessor);
}
} // namespace fastdeploy