mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
77 lines
3.1 KiB
C++
77 lines
3.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
|
|
#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
/*! @brief FastestDet model object used when to load a FastestDet model exported by FastestDet.
|
|
*/
|
|
class FASTDEPLOY_DECL FastestDet : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and the configuration of runtime.
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./fastestdet.onnx
|
|
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
*/
|
|
FastestDet(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
std::string ModelName() const { return "fastestdet"; }
|
|
|
|
/** \brief Predict the detection result for an input image
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
* \param[in] result The output detection result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
|
|
|
|
/** \brief Predict the detection results for a batch of input images
|
|
*
|
|
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
|
* \param[in] results The output detection result list
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
|
std::vector<DetectionResult>* results);
|
|
|
|
/// Get preprocessor reference of FastestDet
|
|
virtual FastestDetPreprocessor& GetPreprocessor() {
|
|
return preprocessor_;
|
|
}
|
|
|
|
/// Get postprocessor reference of FastestDet
|
|
virtual FastestDetPostprocessor& GetPostprocessor() {
|
|
return postprocessor_;
|
|
}
|
|
|
|
protected:
|
|
bool Initialize();
|
|
FastestDetPreprocessor preprocessor_;
|
|
FastestDetPostprocessor postprocessor_;
|
|
};
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|