Files
FastDeploy/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h
guxukai 866d044898 [Model] add detection model : FastestDet (#842)
* model done, CLA fix

* remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess

* remove useless values in preprocess

* remove useless values in preprocess

* fix reviewed problem

* fix reviewed problem pybind

* fix reviewed problem pybind

* postprocess fix

* add test_fastestdet.py, coco_val2017_500 fixed done, ready to review

* fix reviewed problem

* python/.../fastestdet.py

* fix infer.cc, preprocess, python/fastestdet.py

* fix examples/python/infer.py
2022-12-28 10:49:17 +08:00

77 lines
3.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief FastestDet model object used when to load a FastestDet model exported by FastestDet.
*/
class FASTDEPLOY_DECL FastestDet : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./fastestdet.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
FastestDet(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "fastestdet"; }
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of FastestDet
virtual FastestDetPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of FastestDet
virtual FastestDetPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
FastestDetPreprocessor preprocessor_;
FastestDetPostprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy