Files
FastDeploy/fastdeploy/vision/common/processors/mat_batch.cc
Wang Xinyu 044ab993d2 [CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager

* hwc2chw cvcuda

* ppocr rec preproc use manager

* ocr rec preproc cvcuda

* fix rec preproc bug

* ppocr cls&rec preproc set normalize

* fix pybind

* address comment
2023-03-02 10:50:44 +08:00

93 lines
3.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/mat_batch.h"
namespace fastdeploy {
namespace vision {
#ifdef WITH_GPU
void FDMatBatch::SetStream(cudaStream_t s) {
stream = s;
for (size_t i = 0; i < mats->size(); ++i) {
(*mats)[i].SetStream(s);
}
}
#endif
FDTensor* FDMatBatch::Tensor() {
if (has_batched_tensor) {
return fd_tensor.get();
}
FDASSERT(mats != nullptr, "Failed to get batched tensor, Mats are empty.");
FDASSERT(CheckShapeConsistency(mats), "Mats shapes are not consistent.");
// Each mat has its own tensor,
// to get a batched tensor, we need copy these tensors to a batched tensor
FDTensor* src = (*mats)[0].Tensor();
device = src->device;
auto new_shape = src->Shape();
new_shape.insert(new_shape.begin(), mats->size());
input_cache->Resize(new_shape, src->Dtype(), "batch_input_cache", device);
for (size_t i = 0; i < mats->size(); ++i) {
FDASSERT(device == (*mats)[i].Tensor()->device,
"Mats and MatBatch are not on the same device");
uint8_t* p = reinterpret_cast<uint8_t*>(input_cache->Data());
int num_bytes = (*mats)[i].Tensor()->Nbytes();
FDTensor::CopyBuffer(p + i * num_bytes, (*mats)[i].Tensor()->Data(),
num_bytes, device, false);
}
SetTensor(input_cache);
return fd_tensor.get();
}
void FDMatBatch::SetTensor(FDTensor* tensor) {
fd_tensor->SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(),
tensor->device, tensor->device_id);
device = tensor->device;
has_batched_tensor = true;
}
FDTensor* CreateCachedGpuInputTensor(FDMatBatch* mat_batch) {
#ifdef WITH_GPU
// Get the batched tensor
FDTensor* src = mat_batch->Tensor();
// Need to make sure the returned tensor is pointed to the input_cache.
if (src->Data() == mat_batch->output_cache->Data()) {
std::swap(mat_batch->input_cache, mat_batch->output_cache);
std::swap(mat_batch->input_cache->name, mat_batch->output_cache->name);
}
if (src->device == Device::GPU) {
return src;
} else if (src->device == Device::CPU) {
// Batched tensor on CPU, we need copy it to GPU
mat_batch->output_cache->Resize(src->Shape(), src->Dtype(), "output_cache",
Device::GPU);
FDASSERT(cudaMemcpyAsync(mat_batch->output_cache->Data(), src->Data(),
src->Nbytes(), cudaMemcpyHostToDevice,
mat_batch->Stream()) == 0,
"[ERROR] Error occurs while copy memory from CPU to GPU.");
std::swap(mat_batch->input_cache, mat_batch->output_cache);
std::swap(mat_batch->input_cache->name, mat_batch->output_cache->name);
return mat_batch->input_cache;
} else {
FDASSERT(false, "FDMatBatch is on unsupported device: %d", src->device);
}
#else
FDASSERT(false, "FastDeploy didn't compile with WITH_GPU.");
#endif
return nullptr;
}
} // namespace vision
} // namespace fastdeploy