mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Refactoring code of YOLOv5Cls with new model type * fix reviewed problem * Normalize&HWC2CHW -> NormalizeAndPermute * remove cast()
77 lines
3.1 KiB
C++
Executable File
77 lines
3.1 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
|
|
#include "fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5Cls.
|
|
*/
|
|
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and the configuration of runtime.
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./yolov5cls.onnx
|
|
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
*/
|
|
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
std::string ModelName() const { return "yolov5cls"; }
|
|
|
|
/** \brief Predict the classification result for an input image
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
* \param[in] result The output classification result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
|
|
|
|
/** \brief Predict the classification results for a batch of input images
|
|
*
|
|
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
|
* \param[in] results The output classification result list
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
|
std::vector<ClassifyResult>* results);
|
|
|
|
/// Get preprocessor reference of YOLOv5Cls
|
|
virtual YOLOv5ClsPreprocessor& GetPreprocessor() {
|
|
return preprocessor_;
|
|
}
|
|
|
|
/// Get postprocessor reference of YOLOv5Cls
|
|
virtual YOLOv5ClsPostprocessor& GetPostprocessor() {
|
|
return postprocessor_;
|
|
}
|
|
|
|
protected:
|
|
bool Initialize();
|
|
YOLOv5ClsPreprocessor preprocessor_;
|
|
YOLOv5ClsPostprocessor postprocessor_;
|
|
};
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|