Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.h
guxukai 9cd00ad4c5 [Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type

* fix reviewed problem

* Normalize&HWC2CHW -> NormalizeAndPermute

* remove cast()
2023-02-08 11:19:00 +08:00

77 lines
3.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
#include "fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5Cls.
*/
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov5cls.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov5cls"; }
/** \brief Predict the classification result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output classification result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
/** \brief Predict the classification results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output classification result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<ClassifyResult>* results);
/// Get preprocessor reference of YOLOv5Cls
virtual YOLOv5ClsPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv5Cls
virtual YOLOv5ClsPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
YOLOv5ClsPreprocessor preprocessor_;
YOLOv5ClsPostprocessor postprocessor_;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy