Files
FastDeploy/examples/vision/sr/edvr/python
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..
2022-11-25 18:31:22 +08:00

English | 简体中文

EDVR Python Deployment Example

Before deployment, two steps require confirmation

This directory provides examples that infer.py fast finishes the deployment of EDVR on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

# Download deployment example code 
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/sr/edvr/python

# Download VSR model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/EDVR_M_wo_tsa_SRx4.tar
tar -xvf EDVR_M_wo_tsa_SRx4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU inference
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device cpu
# GPU inference
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device gpu
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device gpu --use_trt True

EDVR Python Interface

fd.vision.sr.EDVR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)

EDVR model loading and initialization, among which model_file and params_file are the Paddle inference files exported from the training model. Refer to Model Export for more information

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. Paddle format by default

predict function

EDVR.predict(frames)

Model prediction interface. Input images and output detection results.

Parameter

  • frames(list[np.ndarray]): Input data in HWC or BGR format. Frames are video frame sequences.

Return list[np.ndarray] is the video frame sequence after SR

Other Documents