Files
FastDeploy/examples/vision/matting/rvm/python/infer.py

113 lines
3.6 KiB
Python
Executable File
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of RobustVideoMatting model.")
parser.add_argument("--image", type=str, help="Path of test image file.")
parser.add_argument("--video", type=str, help="Path of test video file.")
parser.add_argument(
"--bg",
type=str,
required=True,
default=None,
help="Path of test background image file.")
parser.add_argument(
'--output-composition',
type=str,
default="composition.mp4",
help="Path of composition video file.")
parser.add_argument(
'--output-alpha',
type=str,
default="alpha.mp4",
help="Path of alpha video file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("src", [1, 3, 1920, 1080])
option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
[1, 16, 240, 135])
option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
[1, 20, 120, 68])
option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
[1, 40, 60, 34])
option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
[1, 64, 30, 17])
return option
args = parse_arguments()
output_composition = args.output_composition
output_alpha = args.output_alpha
# é…<C3A9>ç½®runtime,加载模åž
runtime_option = build_option(args)
model = fd.vision.matting.RobustVideoMatting(
args.model, runtime_option=runtime_option)
bg = cv2.imread(args.bg)
if args.video is not None:
# for video
cap = cv2.VideoCapture(args.video)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
composition = cv2.VideoWriter(output_composition, fourcc, 20.0,
(1080, 1920))
alpha = cv2.VideoWriter(output_alpha, fourcc, 20.0, (1080, 1920))
frame_id = 0
while True:
frame_id = frame_id + 1
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
vis_im = fd.vision.vis_matting(frame, result)
vis_im_with_bg = fd.vision.swap_background(frame, bg, result)
alpha.write(vis_im)
composition.write(vis_im_with_bg)
cv2.waitKey(30)
cap.release()
composition.release()
alpha.release()
cv2.destroyAllWindows()
print("Visualized result video save in {} and {}".format(
output_composition, output_alpha))
if args.image is not None:
# for image
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# å<>¯è§†åŒç»“æžœ
vis_im = fd.vision.vis_matting(im, result)
vis_im_with_bg = fd.vision.swap_background(im, bg, result)
cv2.imwrite("visualized_result_fg.png", vis_im)
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
print(
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg"
)