Files
FastDeploy/examples/vision/generation/anemigan/cpp/infer.cc
chenjian 87bcb5df21 [Model] add style transfer model (#922)
* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-03 10:47:08 +08:00

70 lines
2.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#include "gflags/gflags.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu' or 'gpu'.");
void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu]"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu();
}
else if (FLAGS_device == "cpu") {
option->SetPaddleMKLDNN(false);
return true;
} else {
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl;
return false;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return -1;
}
auto model = fastdeploy::vision::generation::AnimeGAN(FLAGS_model+"/model.pdmodel", FLAGS_model+"/model.pdiparams", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return -1;
}
auto im = cv::imread(FLAGS_image);
cv::Mat res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return -1;
}
cv::imwrite("style_transfer_result.png", res);
std::cout << "Visualized result saved in ./style_transfer_result.png" << std::endl;
return 0;
}