Files
FastDeploy/examples/vision/faceid/insightface/cpp/infer_cosface.cc
Zheng_Bicheng ec67f8ee6d [Model] Refactor insightface models (#919)
* 重构insightface代码

* 重写insightface example代码

* 重写insightface example代码

* 删除多余代码

* 修改预处理代码

* 修改文档

* 修改文档

* 恢复误删除的文件

* 修改cpp example

* 修改cpp example

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 测试python代码

* 跑通python代码

* 修复重复初始化的bug

* 更新adaface的python代码

* 修复c++重复初始化的问题

* 修复c++重复初始化的问题

* 修复Python重复初始化的问题

* 新增preprocess的几个参数的获取方式

* 修复注释的错误

* 按照要求修改

* 修改文档中的图片为图片压缩包

* 修改编译完成后程序的提示

* 更新错误include

* 删除无用文件

* 更新文档
2022-12-26 21:01:58 +08:00

152 lines
5.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto model = fastdeploy::vision::faceid::CosFace(model_file, "");
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
void GpuInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::faceid::CosFace(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
void TrtInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("data", {1, 3, 112, 112});
auto model = fastdeploy::vision::faceid::CosFace(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 6) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_cosface_demo ms1mv3_cosface_r100.onnx "
"face_0.jpg face_1.jpg face_2.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
std::vector<std::string> image_files = {argv[2], argv[3], argv[4]};
if (std::atoi(argv[5]) == 0) {
CpuInfer(argv[1], image_files);
} else if (std::atoi(argv[5]) == 1) {
GpuInfer(argv[1], image_files);
} else if (std::atoi(argv[5]) == 2) {
TrtInfer(argv[1], image_files);
}
return 0;
}