Files
FastDeploy/examples/vision/facedet/centerface/python/infer.py
guxukai 1c115bb237 [Model] Add facedet model: CenterFace (#1131)
* cpp example run success

* add landmarks

* fix reviewed problem

* add pybind

* add readme in examples

* fix reviewed problem

* new file:   tests/models/test_centerface.py

* fix reviewed problem 230202
2023-02-07 14:05:08 +08:00

52 lines
1.4 KiB
Python

import fastdeploy as fd
import cv2
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of CenterFace onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
return option
args = parse_arguments()
# Configure runtime and load the model
runtime_option = build_option(args)
model = fd.vision.facedet.CenterFace(args.model, runtime_option=runtime_option)
# Predict image detection results
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# Visualization of prediction Results
vis_im = fd.vision.vis_face_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")