mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Update VERSION_NUMBER * Update paddle_inference.cmake * Delete docs directory * release new docs * update version number * add vision result doc * update version * fix dead link * fix vision * fix dead link * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_EN.md Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
PaddleClas 量化模型 Python部署示例
本目录下提供的infer.cc
,可以帮助用户快速完成PaddleClas量化模型在CPU/GPU上的部署推理加速.
部署准备
FastDeploy环境准备
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
量化模型准备
-
- 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-
- 用户可以使用FastDeploy提供的一键模型量化工具,自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
以量化后的ResNet50_Vd模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.3.0.tgz
tar xvf fastdeploy-linux-x64-0.3.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.3.0
make -j
#下载FastDeloy提供的ResNet50_Vd量化模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50_vd_ptq.tar
tar -xvf resnet50_vd_ptq.tar
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# 在CPU上使用Paddle-Inference推理量化模型
./infer_demo resnet50_vd_ptq ILSVRC2012_val_00000010.jpeg 0
# 在GPU上使用TensorRT推理量化模型
./infer_demo resnet50_vd_ptq ILSVRC2012_val_00000010.jpeg 1