mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-30 22:32:30 +08:00
101 lines
3.0 KiB
Python
101 lines
3.0 KiB
Python
"""
|
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, Union
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
|
|
class ModelRegistry:
|
|
"""
|
|
Used to register and retrieve model classes.
|
|
"""
|
|
_registry = {}
|
|
|
|
@classmethod
|
|
def register(cls, model_class):
|
|
"""register model class"""
|
|
if issubclass(
|
|
model_class,
|
|
ModelForCasualLM) and model_class is not ModelForCasualLM:
|
|
cls._registry[model_class.name()] = model_class
|
|
return model_class
|
|
|
|
@classmethod
|
|
def get_class(cls, name):
|
|
"""get model class"""
|
|
if name not in cls._registry:
|
|
raise ValueError(f"Model '{name}' is not registered!")
|
|
return cls._registry[name]
|
|
|
|
|
|
class ModelForCasualLM(nn.Layer, ABC):
|
|
"""
|
|
Base class for LM
|
|
"""
|
|
|
|
def __init__(self, configs):
|
|
"""
|
|
Args:
|
|
configs (dict): Configurations including parameters such as max_dec_len, min_dec_len, decode_strategy,
|
|
ori_vocab_size, use_topp_sampling, etc.
|
|
"""
|
|
super(ModelForCasualLM, self).__init__()
|
|
|
|
@abstractmethod
|
|
def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray,
|
|
paddle.Tensor]]):
|
|
"""
|
|
Load model parameters from a given state dictionary.
|
|
|
|
Args:
|
|
state_dict (dict[str, np.ndarray | paddle.Tensor]):
|
|
A dictionary containing model parameters, where keys are parameter names
|
|
and values are NumPy arrays or PaddlePaddle tensors.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
pos_emb=None,
|
|
**model_kwargs,
|
|
):
|
|
"""
|
|
Defines the forward pass of the model for generating text.
|
|
|
|
Args:
|
|
input_ids (Tensor, optional): The input token ids to the model.
|
|
pos_emb (Tensor, optional): position Embeddings for model.
|
|
**model_kwargs: Additional keyword arguments for the model.
|
|
|
|
Returns:
|
|
Tensor or list of Tensors: Generated tokens or decoded outputs.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def compute_logits(self, hidden_state, **logits_prosessor_kwargs):
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def name(self):
|
|
raise NotImplementedError
|