Files
FastDeploy/fastdeploy/vision/detection/ppdet/postprocessor.cc
Zheng_Bicheng 3e1fc69a0c [Model] Add Picodet RKNPU2 (#635)
* * 更新picodet cpp代码

* * 更新文档
* 更新picodet cpp example

* * 删除无用的debug代码
* 新增python example

* * 修改c++代码

* * 修改python代码

* * 修改postprocess代码

* 修复没有scale_factor导致的bug

* 修复错误

* 更正代码格式

* 更正代码格式
2022-11-21 13:44:34 +08:00

230 lines
8.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
bool PaddleDetPostprocessor::ProcessMask(
const FDTensor& tensor, std::vector<DetectionResult>* results) {
auto shape = tensor.Shape();
if (tensor.Dtype() != FDDataType::INT32) {
FDERROR << "The data type of out mask tensor should be INT32, but now it's "
<< tensor.Dtype() << std::endl;
return false;
}
int64_t out_mask_h = shape[1];
int64_t out_mask_w = shape[2];
int64_t out_mask_numel = shape[1] * shape[2];
const int32_t* data = reinterpret_cast<const int32_t*>(tensor.CpuData());
int index = 0;
for (int i = 0; i < results->size(); ++i) {
(*results)[i].contain_masks = true;
(*results)[i].masks.resize((*results)[i].boxes.size());
for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
int x1 = static_cast<int>((*results)[i].boxes[j][0]);
int y1 = static_cast<int>((*results)[i].boxes[j][1]);
int x2 = static_cast<int>((*results)[i].boxes[j][2]);
int y2 = static_cast<int>((*results)[i].boxes[j][3]);
int keep_mask_h = y2 - y1;
int keep_mask_w = x2 - x1;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[i].masks[j].Resize(keep_mask_numel);
(*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
const int32_t* current_ptr = data + index * out_mask_numel;
int32_t* keep_mask_ptr =
reinterpret_cast<int32_t*>((*results)[i].masks[j].Data());
for (int row = y1; row < y2; ++row) {
size_t keep_nbytes_in_col = keep_mask_w * sizeof(int32_t);
const int32_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
int32_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
}
index += 1;
}
}
return true;
}
bool PaddleDetPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
if (DecodeAndNMSApplied()) {
FDASSERT(tensors.size() == 2,
"While postprocessing with ApplyDecodeAndNMS, "
"there should be 2 outputs for this model, but now it's %zu.",
tensors.size());
FDASSERT(tensors[0].shape.size() == 3,
"While postprocessing with ApplyDecodeAndNMS, "
"the rank of the first outputs should be 3, but now it's %zu",
tensors[0].shape.size());
return ProcessUnDecodeResults(tensors, results);
}
if (tensors[0].shape[0] == 0) {
// No detected boxes
return true;
}
// Get number of boxes for each input image
std::vector<int> num_boxes(tensors[1].shape[0]);
int total_num_boxes = 0;
if (tensors[1].dtype == FDDataType::INT32) {
const auto* data = static_cast<const int32_t*>(tensors[1].CpuData());
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
num_boxes[i] = static_cast<int>(data[i]);
total_num_boxes += num_boxes[i];
}
} else if (tensors[1].dtype == FDDataType::INT64) {
const auto* data = static_cast<const int64_t*>(tensors[1].CpuData());
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
num_boxes[i] = static_cast<int>(data[i]);
}
}
// Special case for TensorRT, it has fixed output shape of NMS
// So there's invalid boxes in its' output boxes
int num_output_boxes = static_cast<int>(tensors[0].Shape()[0]);
bool contain_invalid_boxes = false;
if (total_num_boxes != num_output_boxes) {
if (num_output_boxes % num_boxes.size() == 0) {
contain_invalid_boxes = true;
} else {
FDERROR << "Cannot handle the output data for this model, unexpected "
"situation."
<< std::endl;
return false;
}
}
// Get boxes for each input image
results->resize(num_boxes.size());
const auto* box_data = static_cast<const float*>(tensors[0].CpuData());
int offset = 0;
for (size_t i = 0; i < num_boxes.size(); ++i) {
const float* ptr = box_data + offset;
(*results)[i].Reserve(num_boxes[i]);
for (size_t j = 0; j < num_boxes[i]; ++j) {
(*results)[i].label_ids.push_back(
static_cast<int32_t>(round(ptr[j * 6])));
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
(*results)[i].boxes.emplace_back(std::array<float, 4>(
{ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
}
if (contain_invalid_boxes) {
offset += static_cast<int>(num_output_boxes * 6 / num_boxes.size());
} else {
offset += static_cast<int>(num_boxes[i] * 6);
}
}
// Only detection
if (tensors.size() <= 2) {
return true;
}
if (tensors[2].Shape()[0] != num_output_boxes) {
FDERROR << "The first dimension of output mask tensor:"
<< tensors[2].Shape()[0]
<< " is not equal to the first dimension of output boxes tensor:"
<< num_output_boxes << "." << std::endl;
return false;
}
// process for maskrcnn
return ProcessMask(tensors[2], results);
}
void PaddleDetPostprocessor::ApplyDecodeAndNMS() {
apply_decode_and_nms_ = true;
}
bool PaddleDetPostprocessor::ProcessUnDecodeResults(
const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
if (tensors.size() != 2) {
return false;
}
int boxes_index = 0;
int scores_index = 1;
if (tensors[0].shape[1] == tensors[1].shape[2]) {
boxes_index = 0;
scores_index = 1;
} else if (tensors[0].shape[2] == tensors[1].shape[1]) {
boxes_index = 1;
scores_index = 0;
} else {
FDERROR << "The shape of boxes and scores should be [batch, boxes_num, "
"4], [batch, classes_num, boxes_num]"
<< std::endl;
return false;
}
backend::MultiClassNMS nms;
nms.background_label = -1;
nms.keep_top_k = 100;
nms.nms_eta = 1.0;
nms.nms_threshold = 0.5;
nms.score_threshold = 0.3;
nms.nms_top_k = 1000;
nms.normalized = true;
nms.Compute(static_cast<const float*>(tensors[boxes_index].Data()),
static_cast<const float*>(tensors[scores_index].Data()),
tensors[boxes_index].shape, tensors[scores_index].shape);
auto num_boxes = nms.out_num_rois_data;
auto box_data = static_cast<const float*>(nms.out_box_data.data());
// Get boxes for each input image
results->resize(num_boxes.size());
int offset = 0;
for (size_t i = 0; i < num_boxes.size(); ++i) {
const float* ptr = box_data + offset;
(*results)[i].Reserve(num_boxes[i]);
for (size_t j = 0; j < num_boxes[i]; ++j) {
(*results)[i].label_ids.push_back(
static_cast<int32_t>(round(ptr[j * 6])));
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
(*results)[i].boxes.emplace_back(std::array<float, 4>(
{ptr[j * 6 + 2] / GetScaleFactor()[1],
ptr[j * 6 + 3] / GetScaleFactor()[0],
ptr[j * 6 + 4] / GetScaleFactor()[1],
ptr[j * 6 + 5] / GetScaleFactor()[0]}));
}
offset += (num_boxes[i] * 6);
}
return true;
}
std::vector<float> PaddleDetPostprocessor::GetScaleFactor(){
return scale_factor_;
}
void PaddleDetPostprocessor::SetScaleFactor(float* scale_factor_value){
for (int i = 0; i < scale_factor_.size(); ++i) {
scale_factor_[i] = scale_factor_value[i];
}
}
bool PaddleDetPostprocessor::DecodeAndNMSApplied() {
return apply_decode_and_nms_;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy