Files
FastDeploy/examples/vision/detection/paddledetection/rknpu2/cpp/infer_picodet.cc
Zheng_Bicheng 3e1fc69a0c [Model] Add Picodet RKNPU2 (#635)
* * 更新picodet cpp代码

* * 更新文档
* 更新picodet cpp example

* * 删除无用的debug代码
* 新增python example

* * 修改c++代码

* * 修改python代码

* * 修改postprocess代码

* 修复没有scale_factor导致的bug

* 修复错误

* 更正代码格式

* 更正代码格式
2022-11-21 13:44:34 +08:00

66 lines
2.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include "fastdeploy/vision.h"
#include <sys/time.h>
double __get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }
void InferPicodet(const std::string& model_dir, const std::string& image_file);
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
<< std::endl;
return -1;
}
InferPicodet(argv[1], argv[2]);
return 0;
}
void InferPicodet(const std::string& model_dir, const std::string& image_file) {
struct timeval start_time, stop_time;
auto model_file = model_dir + "/picodet_s_416_coco_lcnet_rk3568.rknn";
auto params_file = "";
auto config_file = model_dir + "/infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::detection::PicoDet(
model_file, params_file, config_file,option,format);
model.GetPostprocessor().ApplyDecodeAndNMS();
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
gettimeofday(&start_time, NULL);
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
gettimeofday(&stop_time, NULL);
printf("infer use %f ms\n", (__get_us(stop_time) - __get_us(start_time)) / 1000);
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res,0.5);
cv::imwrite("picodet_result.jpg", vis_im);
std::cout << "Visualized result saved in ./picodet_result.jpg" << std::endl;
}