mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Validate all backends for detection models and add demo code and doc * Delete .README.md.swp
185 lines
5.7 KiB
C++
185 lines
5.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
bool FastDeployModel::InitRuntime() {
|
|
FDASSERT(
|
|
CheckModelFormat(runtime_option.model_file, runtime_option.model_format),
|
|
"ModelFormatCheck Failed.");
|
|
if (runtime_initialized_) {
|
|
FDERROR << "The model is already initialized, cannot be initliazed again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (runtime_option.backend != Backend::UNKNOWN) {
|
|
if (runtime_option.backend == Backend::ORT) {
|
|
if (!IsBackendAvailable(Backend::ORT)) {
|
|
FDERROR
|
|
<< "Backend::ORT is not complied with current FastDeploy library."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
} else if (runtime_option.backend == Backend::TRT) {
|
|
if (!IsBackendAvailable(Backend::TRT)) {
|
|
FDERROR
|
|
<< "Backend::TRT is not complied with current FastDeploy library."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
} else if (runtime_option.backend == Backend::PDINFER) {
|
|
if (!IsBackendAvailable(Backend::PDINFER)) {
|
|
FDERROR << "Backend::PDINFER is not compiled with current FastDeploy "
|
|
"library."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
} else {
|
|
FDERROR
|
|
<< "Only support Backend::ORT / Backend::TRT / Backend::PDINFER now."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
bool use_gpu = (runtime_option.device == Device::GPU);
|
|
#ifndef WITH_GPU
|
|
use_gpu = false;
|
|
#endif
|
|
|
|
// whether the model is supported by the setted backend
|
|
bool is_supported = false;
|
|
if (use_gpu) {
|
|
for (auto& item : valid_gpu_backends) {
|
|
if (item == runtime_option.backend) {
|
|
is_supported = true;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (auto& item : valid_cpu_backends) {
|
|
if (item == runtime_option.backend) {
|
|
is_supported = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_supported) {
|
|
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
|
if (!runtime_->Init(runtime_option)) {
|
|
return false;
|
|
}
|
|
runtime_initialized_ = true;
|
|
return true;
|
|
} else {
|
|
FDWARNING << ModelName() << " is not supported with backend "
|
|
<< Str(runtime_option.backend) << "." << std::endl;
|
|
if (use_gpu) {
|
|
FDASSERT(valid_gpu_backends.size() > 0,
|
|
"There's no valid gpu backend for " + ModelName() + ".");
|
|
FDWARNING << "FastDeploy will choose " << Str(valid_gpu_backends[0])
|
|
<< " for model inference." << std::endl;
|
|
} else {
|
|
FDASSERT(valid_gpu_backends.size() > 0,
|
|
"There's no valid cpu backend for " + ModelName() + ".");
|
|
FDWARNING << "FastDeploy will choose " << Str(valid_cpu_backends[0])
|
|
<< " for model inference." << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (runtime_option.device == Device::CPU) {
|
|
return CreateCpuBackend();
|
|
} else if (runtime_option.device == Device::GPU) {
|
|
#ifdef WITH_GPU
|
|
return CreateGpuBackend();
|
|
#else
|
|
FDERROR << "The compiled FastDeploy library doesn't support GPU now."
|
|
<< std::endl;
|
|
return false;
|
|
#endif
|
|
}
|
|
FDERROR << "Only support CPU/GPU now." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
bool FastDeployModel::CreateCpuBackend() {
|
|
if (valid_cpu_backends.size() == 0) {
|
|
FDERROR << "There's no valid cpu backends for model: " << ModelName()
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < valid_cpu_backends.size(); ++i) {
|
|
if (!IsBackendAvailable(valid_cpu_backends[i])) {
|
|
continue;
|
|
}
|
|
runtime_option.backend = valid_cpu_backends[i];
|
|
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
|
if (!runtime_->Init(runtime_option)) {
|
|
return false;
|
|
}
|
|
runtime_initialized_ = true;
|
|
return true;
|
|
}
|
|
FDERROR << "Found no valid backend for model: " << ModelName() << std::endl;
|
|
return false;
|
|
}
|
|
|
|
bool FastDeployModel::CreateGpuBackend() {
|
|
if (valid_gpu_backends.size() == 0) {
|
|
FDERROR << "There's no valid gpu backends for model: " << ModelName()
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < valid_gpu_backends.size(); ++i) {
|
|
if (!IsBackendAvailable(valid_gpu_backends[i])) {
|
|
continue;
|
|
}
|
|
runtime_option.backend = valid_gpu_backends[i];
|
|
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
|
if (!runtime_->Init(runtime_option)) {
|
|
return false;
|
|
}
|
|
runtime_initialized_ = true;
|
|
return true;
|
|
}
|
|
FDERROR << "Cannot find an available gpu backend to load this model."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
bool FastDeployModel::Infer(std::vector<FDTensor>& input_tensors,
|
|
std::vector<FDTensor>* output_tensors) {
|
|
return runtime_->Infer(input_tensors, output_tensors);
|
|
}
|
|
|
|
void FastDeployModel::EnableDebug() {
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
debug_ = true;
|
|
#else
|
|
FDWARNING << "The compile FastDeploy is not with -DENABLE_DEBUG=ON, so "
|
|
"cannot enable debug mode."
|
|
<< std::endl;
|
|
debug_ = false;
|
|
#endif
|
|
}
|
|
|
|
bool FastDeployModel::DebugEnabled() { return debug_; }
|
|
|
|
} // namespace fastdeploy
|