Files
FastDeploy/tests/layers/test_speculative_sampler.py
freeliuzc 15f5112ecb [Speculative Decoding]Support different inferseed in speculate decoding (#5568)
* fix mtp entropy drop in RL

* optimize usage and fix unit test

* optimize padding_sampling_params speed(vectorized)

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-12-17 16:14:29 +08:00

286 lines
11 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from unittest.mock import Mock
import paddle
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
)
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import (
MTPSampler,
SpeculativeSampler,
padding_sampling_params,
)
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
fake_logits = paddle.rand(shape=[batch_size, vocab_size], dtype="float32")
return fake_logits
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
def _create_tokens_tensor(
batch_size: int,
max_seq_len: int,
) -> paddle.Tensor:
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
return pre_token_ids
def _create_default_sampling_metadata(
batch_size: int,
min_seq_len: int,
max_seq_len: int,
max_num_logprobs: int = None,
) -> SamplingMetadata:
fake_sampling_metadata = SamplingMetadata(
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
top_k=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int32"),
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
min_p=paddle.randn([batch_size]),
seed=paddle.full(shape=[batch_size], fill_value=0, dtype="int64"),
)
if max_num_logprobs is not None:
fake_sampling_metadata.max_num_logprobs = max_num_logprobs
return fake_sampling_metadata
def _create_fd_config(max_model_len):
model_config: Mock = Mock()
model_config.max_model_len = max_model_len
speculative_config = SpeculativeConfig({})
graph_opt_config = GraphOptimizationConfig({})
scheduler_config = SchedulerConfig({})
parallel_config = ParallelConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
fd_config = FDConfig(
model_config=model_config,
speculative_config=speculative_config,
graph_opt_config=graph_opt_config,
scheduler_config=scheduler_config,
parallel_config=parallel_config,
cache_config=cache_config,
)
return fd_config
def _create_share_inputs(max_num_seqs, max_draft_token_num, max_model_len, vocab_size):
share_inputs = {}
share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
share_inputs["output_cum_offsets"] = paddle.concat(
[(max_model_len - share_inputs["seq_lens_this_time"][i]) * i for i in range(max_num_seqs)]
)
share_inputs["output_padding_offset"] = paddle.repeat_interleave(share_inputs["output_cum_offsets"], 2)
share_inputs["accept_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
)
share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=1, dtype="int32")
share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 1, dtype="int64")
share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
share_inputs["draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
)
share_inputs["max_dec_len"] = paddle.full([max_num_seqs, 1], max_model_len, dtype="int64")
share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
share_inputs["actual_draft_token_num"] = paddle.full(
shape=[max_num_seqs], fill_value=max_draft_token_num, dtype="int32"
)
share_inputs["batch_token_num"] = paddle.where(
share_inputs["seq_lens_encoder"] != 0,
paddle.ones_like(share_inputs["seq_lens_encoder"]),
share_inputs["seq_lens_this_time"],
).squeeze(1)
share_inputs["next_token_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
share_inputs["cu_batch_token_offset"] = paddle.concat(
[paddle.to_tensor([0]), paddle.cumsum(share_inputs["accept_num"])]
).astype("int32")
share_inputs["cu_next_token_offset"] = paddle.full(shape=[max_num_seqs + 1], fill_value=0, dtype="int32")
share_inputs["substep"] = 0
share_inputs["draft_logits"] = paddle.full(
[max_num_seqs * (max_draft_token_num + 1), vocab_size], -1, dtype="float32"
)
return share_inputs
def _create_padding_inputs():
# batch_size = 3
top_p = paddle.to_tensor([[0.9], [0.8], [0.7], [1.0]], dtype="float32")
top_k = paddle.to_tensor([[10], [20], [30], [40]], dtype="int32")
infer_seed = paddle.to_tensor([[100], [200], [300], [400]], dtype="int64")
# decoder, encoder, decoder
seq_lens_encoder = paddle.to_tensor([[0], [5], [0], [0]], dtype="int32")
seq_lens_this_time = paddle.to_tensor([[3], [2], [0], [2]], dtype="int32")
return top_p, top_k, infer_seed, seq_lens_this_time, seq_lens_encoder
def test_speculative_sampler():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampler = SpeculativeSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_speculative_sampler_logprobs():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
sampling_metadata.share_inputs = share_inputs
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
for logprobs_mode in logprobs_mode_list:
fd_config.model_config.logprobs_mode = logprobs_mode
sampler = SpeculativeSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_mtp_sampler():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampler = MTPSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_mtp_sampler_logprobs():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
sampling_metadata.share_inputs = share_inputs
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
for logprobs_mode in logprobs_mode_list:
fd_config.model_config.logprobs_mode = logprobs_mode
sampler = MTPSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_padding_sampling_params_basic():
top_p, top_k, infer_seed, seq_lens_this_time, seq_lens_encoder = _create_padding_inputs()
top_p_pad, top_k_pad, seed_pad = padding_sampling_params(
top_p, top_k, infer_seed, seq_lens_this_time, seq_lens_encoder
)
# decoder(3) + encoder(1) + decoder(2) = 6
assert top_p_pad.shape == [6, 1]
assert top_k_pad.shape == [6, 1]
assert seed_pad.shape == [6, 1]
# top_p padding check
expected_top_p = [0.9, 0.9, 0.9, 0.8, 1.0, 1.0]
assert paddle.allclose(top_p_pad.squeeze(), paddle.to_tensor(expected_top_p, dtype="float32"))
# top_k padding check
expected_top_k = [10, 10, 10, 20, 40, 40]
assert paddle.equal_all(top_k_pad.squeeze(), paddle.to_tensor(expected_top_k, dtype="int32"))
def test_padding_sampling_params_seed_offset():
top_p, top_k, infer_seed, seq_lens_this_time, seq_lens_encoder = _create_padding_inputs()
_, _, seed_pad = padding_sampling_params(top_p, top_k, infer_seed, seq_lens_this_time, seq_lens_encoder)
# decoder(0): 100 + 4*k
# encoder(1): 200 (no offset)
# null
# decoder(3): 400 + 4*k
expected_seed = [
100,
104,
108, # first decoder seq (len=3)
200, # encoder
400,
404, # second decoder seq (len=2)
]
assert paddle.equal_all(seed_pad.squeeze(), paddle.to_tensor(expected_seed, dtype="int64"))
if __name__ == "__main__":
test_speculative_sampler()
test_speculative_sampler_logprobs()
test_mtp_sampler()
test_mtp_sampler_logprobs()
test_padding_sampling_params_basic()
test_padding_sampling_params_seed_offset()