Files
FastDeploy/tests/operators/test_split_fuse.py
YUNSHEN XIE 3a6058e445 Add stable ci (#3460)
* add stable ci

* fix

* update

* fix

* rename tests dir;fix stable ci bug

* add timeout limit

* update
2025-08-20 08:57:17 +08:00

85 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UT for set_stop_value"""
import paddle
from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse
input_ids = []
image_type_ids = []
grid_thw = []
def split_grid(origin_grid_thw):
# 划分grid_thw该函数用于视频场景
# origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12]
grid_thw = []
for t, h, w in origin_grid_thw:
if t > 2:
num_groups = t // 2
remainder = t % 2
for _ in range(num_groups):
grid_thw.extend([2, h, w])
if remainder > 0:
grid_thw.extend([remainder, h, w])
else:
grid_thw.extend([t, h, w])
return grid_thw
if __name__ == "__main__":
grid_thw = [[6, 20, 20], [6, 40, 20]]
grid_thw = split_grid(grid_thw)
image_bs = len(grid_thw) // 3
image_type_ids = [0] * image_bs
# 随机拼接input_ids: [txt0+img1+tx1+img2]
input_ids = [2] * 19
img1 = [100295] * 100 * 3
txt1 = [3] * 19
img2 = [100295] * 200 * 3
input_ids.extend(img1)
input_ids.extend(txt1)
input_ids.extend(img2)
split_fuse_img_size = 16
split_fuse_text_size = 384 # 1024
seq_len = len(input_ids)
input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64")
image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32")
is_image_token = paddle.where(input_ids_tensor == 100295, 1, 0)
image_token_sum = paddle.cumsum(is_image_token) # 前缀和
image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum])
grid_thw_tensor = paddle.to_tensor(grid_thw, dtype="int64")
image_chunk_selections, split_fuse_cur_seq_lens = get_mm_split_fuse(
input_ids_tensor.cpu(),
image_type_ids_tensor.cast("int32").cpu(),
image_token_sum.cast("int32").cpu(),
grid_thw_tensor.cpu(),
100295,
image_bs,
0,
seq_len,
split_fuse_img_size,
split_fuse_text_size,
2048,
)
print("seq_len: ", seq_len)
print("grid_thw", grid_thw_tensor)
print("image_chunk_selections: ", image_chunk_selections)
print("split_fuse_cur_seq_lens: ", split_fuse_cur_seq_lens)