Files
FastDeploy/tests/operators/test_perchannel_gemm.py
YUNSHEN XIE 3a6058e445 Add stable ci (#3460)
* add stable ci

* fix

* update

* fix

* rename tests dir;fix stable ci bug

* add timeout limit

* update
2025-08-20 08:57:17 +08:00

89 lines
3.2 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UT for per_channel_fp8_fp8_half_gemm_fused kernel"""
import os
import unittest
from itertools import product
import numpy as np
import paddle
class Test(unittest.TestCase):
def setUp(self):
"""
Initialize the test environment,
including setting random seeds and environment variables.
"""
paddle.seed(2003)
os.environ["FLAGS_use_cutlass_device_best_config_path"] = "default"
def testcase1(self):
"""
Check if the per_channel_fp8_fp8_half_gemm_fused function works properly.
"""
prop = paddle.device.cuda.get_device_properties()
cc = prop.major * 10 + prop.minor
if cc < 89:
self.skipTest("per_channel_fp8_fp8_half_gemm_fused only support sm89+")
from fastdeploy.model_executor.ops.gpu import (
per_channel_fp8_fp8_half_gemm_fused,
)
nks = [[2048, 2048], [2048, 5504], [6144, 2048]]
nks = nks + [[4096, 4096], [4096, 12800], [6144, 4096]]
nks = nks + [[5120, 5120], [5120, 13824], [15360, 5120]]
m = [1, 32, 64, 128, 256, 512, 1024, 2048]
combinations = list(product(m, nks))
for m, (n, k) in combinations:
A_bf16 = paddle.rand(shape=[m, k], dtype="bfloat16")
A_fp8 = paddle.cast(A_bf16, "float8_e4m3fn")
B_bf16 = paddle.rand(shape=[n, k], dtype="bfloat16")
B_fp8 = B_bf16.astype("float8_e4m3fn")
scalar_scale = paddle.full([1], 0.5, dtype="float32")
channel_scale = paddle.rand(shape=[n], dtype="float32")
bias = paddle.rand(shape=[n], dtype="bfloat16")
result_bf16 = paddle.matmul(A_bf16, B_bf16, transpose_y=True) * scalar_scale * channel_scale + bias
result_fp8 = per_channel_fp8_fp8_half_gemm_fused(
A_fp8,
B_fp8,
bias=bias,
scalar_scale=scalar_scale,
channel_scale=channel_scale,
transpose_x=False,
transpose_y=True,
output_dtype="bfloat16",
)
# absolute_error = paddle.abs(result_bf16 - result_fp8)
# mean_absolute_error = paddle.mean(absolute_error)
relative_error = paddle.abs(result_bf16 - result_fp8) / (paddle.abs(result_bf16))
mean_relative_error = paddle.mean(relative_error)
np.testing.assert_allclose(
mean_relative_error.numpy(),
np.array([0.001]),
rtol=0.001,
atol=0.25,
)
if __name__ == "__main__":
unittest.main()