mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
89 lines
3.2 KiB
Python
89 lines
3.2 KiB
Python
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""UT for per_channel_fp8_fp8_half_gemm_fused kernel"""
|
|
|
|
import os
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
|
|
class Test(unittest.TestCase):
|
|
def setUp(self):
|
|
"""
|
|
Initialize the test environment,
|
|
including setting random seeds and environment variables.
|
|
"""
|
|
paddle.seed(2003)
|
|
os.environ["FLAGS_use_cutlass_device_best_config_path"] = "default"
|
|
|
|
def testcase1(self):
|
|
"""
|
|
Check if the per_channel_fp8_fp8_half_gemm_fused function works properly.
|
|
"""
|
|
prop = paddle.device.cuda.get_device_properties()
|
|
cc = prop.major * 10 + prop.minor
|
|
if cc < 89:
|
|
self.skipTest("per_channel_fp8_fp8_half_gemm_fused only support sm89+")
|
|
|
|
from fastdeploy.model_executor.ops.gpu import (
|
|
per_channel_fp8_fp8_half_gemm_fused,
|
|
)
|
|
|
|
nks = [[2048, 2048], [2048, 5504], [6144, 2048]]
|
|
nks = nks + [[4096, 4096], [4096, 12800], [6144, 4096]]
|
|
nks = nks + [[5120, 5120], [5120, 13824], [15360, 5120]]
|
|
|
|
m = [1, 32, 64, 128, 256, 512, 1024, 2048]
|
|
|
|
combinations = list(product(m, nks))
|
|
for m, (n, k) in combinations:
|
|
A_bf16 = paddle.rand(shape=[m, k], dtype="bfloat16")
|
|
A_fp8 = paddle.cast(A_bf16, "float8_e4m3fn")
|
|
B_bf16 = paddle.rand(shape=[n, k], dtype="bfloat16")
|
|
B_fp8 = B_bf16.astype("float8_e4m3fn")
|
|
|
|
scalar_scale = paddle.full([1], 0.5, dtype="float32")
|
|
channel_scale = paddle.rand(shape=[n], dtype="float32")
|
|
bias = paddle.rand(shape=[n], dtype="bfloat16")
|
|
|
|
result_bf16 = paddle.matmul(A_bf16, B_bf16, transpose_y=True) * scalar_scale * channel_scale + bias
|
|
result_fp8 = per_channel_fp8_fp8_half_gemm_fused(
|
|
A_fp8,
|
|
B_fp8,
|
|
bias=bias,
|
|
scalar_scale=scalar_scale,
|
|
channel_scale=channel_scale,
|
|
transpose_x=False,
|
|
transpose_y=True,
|
|
output_dtype="bfloat16",
|
|
)
|
|
# absolute_error = paddle.abs(result_bf16 - result_fp8)
|
|
# mean_absolute_error = paddle.mean(absolute_error)
|
|
relative_error = paddle.abs(result_bf16 - result_fp8) / (paddle.abs(result_bf16))
|
|
mean_relative_error = paddle.mean(relative_error)
|
|
np.testing.assert_allclose(
|
|
mean_relative_error.numpy(),
|
|
np.array([0.001]),
|
|
rtol=0.001,
|
|
atol=0.25,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|