mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
63 lines
2.2 KiB
Python
63 lines
2.2 KiB
Python
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""UT for air_top_p_sampling kernel"""
|
|
|
|
import subprocess
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
import fastdeploy.model_executor.ops.gpu
|
|
|
|
|
|
class Test(unittest.TestCase):
|
|
def setUp(self):
|
|
"""
|
|
Initialize.
|
|
"""
|
|
paddle.seed(2024)
|
|
np.random.seed(42)
|
|
print(paddle.device.cuda.get_device_properties())
|
|
print(paddle.__git_commit__)
|
|
nvcc_output = subprocess.check_output(["nvcc", "--version"], universal_newlines=True)
|
|
output = nvcc_output.split()
|
|
release_idx = output.index("release") + 1
|
|
self.nvcc_cuda_version = float(output[release_idx].split(",")[0])
|
|
|
|
def test_air_top_p_sampling(self):
|
|
"""
|
|
Check air_top_p_sampling output with paddle.tensor.top_p_sampling.
|
|
"""
|
|
if self.nvcc_cuda_version < 12.0:
|
|
self.skipTest("air_top_p_sampling only support cu12+")
|
|
bsz = 8
|
|
vocab_size = 103424
|
|
x = paddle.randn([bsz, vocab_size])
|
|
x = paddle.nn.functional.softmax(x)
|
|
x = paddle.cast(x, "float32")
|
|
top_ps = paddle.to_tensor(np.random.uniform(0, 1, [bsz]).astype(np.float32))
|
|
_, next_tokens = fastdeploy.model_executor.ops.gpu.air_top_p_sampling(
|
|
x.cuda(), top_ps.cuda(), None, None, seed=0, k=1, mode="truncated"
|
|
)
|
|
print(next_tokens)
|
|
less_than_zero = next_tokens >= 0
|
|
greater_than_vocab_size = next_tokens <= vocab_size
|
|
accuracy = paddle.logical_and(less_than_zero, greater_than_vocab_size)
|
|
print(f"Accuracy of results: {accuracy}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|